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Abstract - The most expensive and the time
consuming step of software development life cycle is its
testing. There are several research proposed to develop
a low cost, scalable and effective method for software
testing. With the help of the techniques of automatic
generation of test cases one can easily and very
efficiently find an optimal set of cases that allow an
appropriateness criterion to be fulfilled, which helps in
reducing the cost of software testing and resulting in
more efficient software testing. In this paper we are
trying to discuss a new technique for automated test
case generation using teaching learning based
optimization. This technique extends the random
testing by the use of teaching learning based
optimization where the fitness function is based on the
branch coverage.

Keywords - Automatic test generation, Software
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I. INTRODUCTION

intensive and
expensive approximately 50% of the cost of a software

Software testing 1s very labor

system development is spending on testing. If the

process of testing is automated then this cost of testing

can be reduced - an automate test case generator is one of

the most important component in a testing environment

—that automatically generates test data for a given

program [1]. Test case generation in software testing is

the process of indentifying program input data. A test

data generator is a tool that helps programmer in the

development of test data for a program. The automation

of test data generation is an important step in reducing

the cost of software development and maintenance.

1.1 Quality characteristics of a test case

® How effective indetecting defects?

® How exemplary? (The more exemplary, the fewer
test cases needed)

® How economic?

e Howevolvable? (Maintenance effort)
1.2 Problem with Manual Testing?

The manual testing is not so effective because of the
following reasons:

® [fcovers functionality only at human speed

® Major investment in process and not In errors
detection

Limited by resources availability and not necessity
Inexact repetition of tests

Inaccurate result checking

Difficult regression testing means or NO regression
testing.

The paper is organized as follows: Section 2 gives
some important reasons why we have need of test
automation. Section 3 describes the different
optimization techniques and proposed technique, which
is used to reduce the cost of software testing. Section 4
describes the literature which is used in the paper.
Section 5 describes the purposed methodology. Section
6 shows TLBO technique for automatic test-data
generation, and the results of applying this algorithm to
an example program. And presents the results of the
experiments that are conducted to evaluate the
effectiveness of the proposed TLBO compared to the
random testing technique, to evaluate the effectiveness
of the new fitness function and the technique used to
reduce the cost of software testing. Section 7 presents the

conclusions and future work.

II. NEED OF TEST AUTOMATION
2.1 Faster and more accurate

It’s faster and more accurate than manual testing.
Automation is 50 times faster, depending upon the speed
of the driver machine and the speed of the application to
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process information (inserts, updates, deletes and
views).Using Test tools for inputs are much more
accurate than manual test inputs. The average typist
makes 3 mistakes for every 1,000 keystrokes. Also,
automation tools never tire, get bored, take shortcuts or
make assumptions of what works.

2.2 Ease of access -Automation tools allow access to
data, objects, operating, and communication protocols,
that manual tester cannot access. This allows for a test
suite with much greater depth and breadth.

2.3 Accumulation — long-term benefits can be
derived through reuse of tests, once tests are developed.
The numbers of tests are always increasing as the
application/architecture matures. Engineers can
constantly add onto test suite and not have to test the
same functionality over and over again.

2.4 Ability to manage — Ability to manage artifacts
through automation tools.

2.5 Identification of issues — Automated testing
assists with the identification of issues early in the
development process. reducing costs.

2.0 Repeatable Process — An automation suile
provides a repeatable process to check out the
functionality on the functional side and scalability on the
performance side.

2.7 24x7 Availability — Scripts can run any time
during the day or night unattended.

2.8 Formal process — Automation forces a more
formal process on test teams, due to the nature of the
explicitness of the artifacts and the flow of information
that is needed.

2.9 Retention of customers — When sites are not
functioning correctly or performing poorly, customers
may leave and never come back. Then decide the cost to
your business of that scenario? Performing correct and
systematic automated testing helps assure a quality
experience for the customer —both internal and'external.

2.10 Job satisfaction — The Test Engineers no longer
manually execute the same test cases over and over.

Test case generation is categorized as optimization
problem in which an optimal test case is intended to be
generated so that the software can be tested to the
maximum possible extend. Various optimization
techniques that can be applied to generate the test cases
are briefed in section below.

[I1. OPTIMIZATION TECHNIQUES

3.1 Genetic Algorithm - GA are adaptive heuristic

search algorithm based on the evolutionary ideas of
natural selection and genetics. GA are a part of

evolutionary computing, a rapidly growing area of Al
GA is inspired by Darwins theory about evolution
“*survival of the fittest™. It is generally used in situation
where the search space is relatively large and cannot be
traversed efficiently by classical search methods [2].
They use the same mixture of selection, recombination
and mutation to evolve asolution toaproblem [3].

3.2 PSO - Particle Swarm Optimization (PSO) was

initially proposed to find optimal solutions for
continuous space problems by Kennedy and Eberhart [4.

5] in 1995. PSO is inspired by social descriptions of

behavior and swarm theory, simple methods were
developing for resourcefully optimizing non-linear
mathematical functions. PSO pretends swarms such as
crowds of animals, groups of birds or institutes of fish.

Similar to genetic search, the system is prepared with
a population of random solutions, called particles.
Where each particle sustains its own current location, its
present rapidity and its personal best position discovered
so far. The swarm 1s also attentive of the global best
position achieved by all its members.

3.3TLBO—-Raoetal.(2011,2012)and Rao and Patel
(2012) proposed a (Teaching-learning-based
optimization algorithm is a teaching—lcarning process
inspired algorithm) TLBO. It is a population- based
iterative learning algorithm that shows some mutual
features with other evolutionary computation (EC)
algorithms. The algorithm mimics teaching-learning
ability of teacher and learners in a class room. A high
quality teacher is usually considered as a highly learned
person who trains learners so that they can have better
results in terms of their marks or grades. Moreover,
learners also learn from the interaction among
themselves which also helps in improving their results
[6]. Two vital components of the algorithm are Teacher
and learners and describe two basic modes of the
learning, through teacher (known as teacher phase) and
interacting with the other learners (known as learner
phase). Working of both the phases is explained below.

3.3.1 Teacher phase

During this phase a teacher emphasizes to increase
the mean result of the class in the subject taught by him
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or her as per his/her capability. At any iteration i, assume
that there are m number of subjects (i.e., design
variables), n number of learners (i.e., population size,
k01,2,...,n) and Mj, i be the mean result of the learners
in a particular subject j (jO1, 2,..., m) The best overall
result Xtotal-kbest.i considering all the subjects
together obtained in the entire population of learners
can be considered as the result of best learner kbest.
However, as the teacher is usually considered as a
highly talented, learned person who trains learners so
that they can produce better results, the algorithm
identified the best learner as the teacher. The difference
between the existing mean result of cach subject and
the corresponding result of the teacher for cach subject
is given by,

Difference Meanj,i = ri (Xj.kbest,i — TF*Mj,i)
(1)

Where. Xj.kbest.i is the result of the best learner
(i.e., teacher) in subject j. TF is the teaching factor
which decides the value of mean to be changed, and ri
is the random number in the range [0, 1]. Value of TF
can be either 1 or 2. The value of TF is decided
randomly with equal probability as,

TF = round [1+rand(0,1){2-1}] 2

The value of TF is not given as an input to the
algorithm and its value is randomly decided by the
algorithm using Eq. (2). After conducting a number of
experiments on many benchmark functions it is
concluded that the algorithm performs better if the
value of TF is between | and 2. Simplify the algorithm,
the teaching factor is suggested to take either 1 or 2
depending on the rounding up criteria given by Eq.(2).

Based on the Difference Mean j,k,i, the existing
solution is updated in the teacher phase according to
the following expression. .

X'j.ki = Xj.k.i + Difference_Meanj,k.I (3)

where X'j.k.iis the updated value of Xj.k.i. X'j.k,iis
accepted if it gives better function value. All the
accepted function values at the end of the teacher phase
are maintained and these values become the input to
the learner phase. The learner phase depends upon the
teacher phase.

3.3.2 Learner phase

Learners increase their knowledge by interaction
among themselves. A learner interacts randomly with

other learners for enhancing his or her knowledge. A
learner learns new things if the other learner has more
knowledge than him or her. Considering a population
size of n. the learning phenomenon of this phase is
expressed below.

Randomly two learners Pand Q are selected such that
X'total-P,i = X'total-Q.i (where, X'total-P.I and X'total-
Q.i are the updated values of Xtotal-P,i and Xtotal-Q.i
respectively at the end of teacher phase)

X"j,Bi=XY4,Bi + ri (Xj Pi-Xj.Q.) If X'total-P.i >
X'total-Q,i (4)

X', Pi=X}.Pi+ri (X},0.i- Xj.Pi), If X'total-0.1>
X'total-Pi (3)

(Above equations is for maximization problem,
reverse is true for minimization problem)

X"j,P.iisaccepted if it gives a better function value.

IV. LITERATURE REVIEW

Vigorous research has been carried out in the
automatic test case generation for number of years. In
1990 Bogdan Korel a proposed an alternative approach
of test data generation which is based on actual
execution of the program under test, function
minimization method and dynamic data flow analysis.
Test data are developed for the program using actual
values of input variables [17] while M R Keyvanpour
proposed hybrid method called GA-NN are then
considered and studied in order to understand when
and why a learning algorithm is effective for testing
problem [18].

Automated test case generation isa classical problem
of optimization therefore a number of optimization
techniques have been applied to improve the testing
capabilities of atool. Artificial Bee Colony Optimization
is used for the test data generation optimization [8].
Another optimization algorithm is Ant Colony
Optimization is used for test data generation [7][ 11].

Anu Sharma proposes an efficient cost effective
approach for optimizing the cost of testing using Tabu
Search (TS) [9]. Andreas Windisch has applied particle
swarm optimization (PSO) on generating test cases [ 12].
Moheb R .Girgis, 2005[13] presents an automatic test
data generation technique that uses a genetic algorithm
(GA). The most widely used metaheuristic techniques in
this yield is genetic algorithm (Gold berg, 1989). This
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techniques is based on the principle of genetic and
Darwin’s theory of evolution, Miller et al [ 14]. Pargas et
al[15], Lin-Yeh[16].

Recently, the use of Teaching Learning Based

Optimization in optimization became the focus of

several research studies [19-22]. Babak Amiri is also
applied TLBO on cluster[10].As discussed previously
optimization techniques like GA, PSO. ACO, ABC etc
have already been used by researchers to optimize the
test data generation process but no one could claim that a
particular technique is the most superior one as
compared to the others in all circumstances. So, the
scope of applying other optimization techniques for test
case generation remains open, keeping this in view it is
planned to apply TLBO for generating the optimal test
cases in this paper.

V. PROPOSED METHODOLOGY

In this proposed method (Fig.1) a source program
preferably written C language will be taken as input. A
control flow graph corresponding to given source

program will be generated. On the basis of number of

variables in the source program test cases will be
generated randomly. A test case will be a tuple of *n’
values ifthere are *n” variables in the program, m number
such test cases will be clubbed together to form a test
sutt.

Initially *k” number of test suits will be taken to start
the optimization process. In the next step branch
coverage ratio of each 'k’ number of test suits will be
computed. On the basis of BC ratio test suit with
maximum BC ratio will be derlared as teacher and other
test suits as students. After which TLBO is applied to
optimize the BC ratio. We apply the process of teaching
phase and learner phase for much iteration until we have
on the termination criteria. After termination we will get
the optimized test suit. That has maximum branch
coverage ratio.

V1. AN EXAMPLE
6.1 Source Program
Int a,b,c:
scan (“%d,%d.%d", &a,&b.&c):
1.2.3: if (a<=0 Il b=<=0 1I ¢<=0)
4 printf(‘*“‘\nwrong input™); Else |
S if (a<b)

6: swap (a,b):

IR:
19:

if (a<c);

swap (a.c):

if (b=<c);

swap (b,c):

if (a>=btc)

printf (“\nwrong input”);
else if (a==b)}

if (b==c¢)

printf (\nEquilateral™); else
printf (“\nlsoslist™):} else |
if (b==c)

printf (“nlsoshst™): Else

printf (“\nScalen™): |

Input a source

v
Generate CEG

.

Generate N initial test suits

.

Compute the BC ratio

>

Select the TS with best BC ratio as
teacher and rest of the TSs as student

'

Apply the Teacher

v

Apply the learner phase

Print the TS of best BC
Ratio as optimal TS

Fig. | The proposed methodology
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6.2 Control flow graph
Itis shownin Fig.2.

6.3 Test Suit Generation

Random Test Suits
TS(0)—{(3.4,5)(5,7,8)(11,12,13)(6,8,8)}
TS(1)—1(0.1,3)(4,4.8)(5,5.5)(2.4.6)}

TS (2)—{(3.4.7)(11,12,15)(15,21,18)(18,12,12)}
TS (3)—{(7.8,7)(12,0,16)(10,5,8)(2,2,2)}

Path Followed By Test Case

(3,4,5)--  1,2,3,5,6,7,8,9,10,11,13,17,19
(5.7,8)--- 1,2.3.5:6,7.8.9.10.11.13.17.19
(11,12,13)---1.2,3.5,6,7.8,9,10,11,13,17,19

(6,8.8)---  1,2,3.5.6,7.9,10,11.13,14.16
(0, 1,3)--- 1.4

(4.4, 8)--- 1,2,3,5;7,8:9,11,12

(955, 5)—== 1,2,3,4,5,7.9.11,13,14,15
(2.4,6)--- 1,23,56.7.89,10,11,12
(3.4,7)--- 1,2,3,5,6,7,8.9,10,11,12

(11,12,15)---1,2,3,5,6,7,8.9,10,11,13,17,19
(15,21,18)---1,2,3,5,6,7,9,10,11,13,17.19
(18,12,12)---1,2,3,5,6,7,9.11,13,17,18

(7.8.7)--- 1,2,3.5,6,79.11,13,17,18
(1
_ ‘»' A
; 1——;(:
L

_~ .
: 12 ) 131
= s
—F b
{14) ( 17} \,
v A — . .
7y {16 B) (19)
15) N — N )
— 5 Z -~
< \ /
= = - “_D
‘:e-n-i

Fig. 2 Control flow graph

0.5(16-1*8)=4

Updated TC—(5+1,7+(-3). 8+4)> (6.4, 12)
Nextiteration.

0.5(12-1*%6)=3

0.5(0-1%4)=-2

0.5(16-1*12)=2

Updated TC—(6+3,4+(-2), 12+2)->(9.2, 14)
Next iteration.

0.5(12-1¥9)=1.5=>2

0.5(0-1*%2)=-1

0.5(16-1*14)=1

Updated TC—(9+2,2+(-1), 14+ 1)=> (11,1, 15)
Next iteration.

0.5(12-1*11)=0.5=>1

0.5(0-1%¥1)=-0.5->-1

0.5(16-1¥15)=0.5=>1

Updated TC—(11+1, 1+(-1), 15+1)=> (12,0, 16)
TS (1) is update according with Teacher.

TS (1)—{(4.4,8)(0,1,3)(5.5.5)(2,4.6) }

Updated TS (1) - {(4,4,8) (12,0,16) (2,2,2) (2,4.6)}
BCR TS (1) ---20/29=0.689
TS (2) is update according with Teacher.

TS (2)—{(3,4,7)(15,21,18)(11,12,15) (18,12,12)}

TS(3)—4(7.8,7)(10,5,8)(12,0,16)(2,2,2)}

Updated TS(2)---{(3.4.7) (15.21.18) (12,0.16) (2,2.2);
BCRTS (2)---22/29=0.758

Update BCRof TS

BCR TS(0)--- {(3,4,5)(12,0,16) (6.8,8) (2,2,2)}=>
23/29=0.793

BCRTS(1)--- {(4.4,8)(2,4.6)(2,2.2)(12,0,16)]
20/29=0.689

BCRTS(2)-—- {(3,4,7)(15,21,18)(12,0,16) (2,2,2)}=
22/29=0.758

BCRTS(3)--- 1(7,8,7)(12,0,16)(10,5,8)(2,2.2)} ==

20/29=0.689
On the Basis of updated BCR TS (0) is Teacher.
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TS (1) is Update According with Teacher
TS(1)---{(3.4.5)(6,8.8)(2,2,2)(12,0,16)}
BCRTS (1)---23/29=0.793

TS (2) is Update According with Teacher
TS(2)--- {(6,8,8) (15,21,18) (12,0,16) (2,2,2)}
BCR TS (2)---23/29=0.793

TS (3) is Update According with Teacher
TS(3)--- {(7.8,7)(12,0,16)(3,4.5) (2,2.2)}
BCRTS(3)---23/29=0.793

1
2
5 03
s
® 06
@
5
S 04
<
£ 02
m

0

Iteration number

Fig 3 Iteration-wise Branch Coverage Ratio.

[tis observed from chart shown in Fig. 3 that in every
iteration branch-coverage of test suits is increased by
applying TLBO. In the graph TS shows Test Suit while
on X-axis shows the number of iteration and on Y-axis
shows branch coverage ratio.

VIL. CONCLUSION AND FUTURE SCOPE

It is apparent from the example that coverage ratio is
improving after every pass therefore it is expected to
have more optimized test cases by the proposed method.
Development of an automated tool to generate the
optimized test cases based on the methocology
discussed in this paper is under process. Here vs/e are
considering Branch coverage ratio only. as a fitness
function. including this we can use other factor like
Close to boundary value, and Likelihood.
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