Abstract- In this paper, Laplace decomposition algorithm
(LDA) is introduced for the approximate solution of the
system of homogeneous linear partial differential
equations. The technique is deseribed and illustrated with
some numerical applications. The results assert that this
scheme is rapidly convergent and quite accurate by which
it approximates the solution using only few terms of its
iteration scheme.
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I. INTRODUCTION

System of homogeneous linear partial differential

applied science because of their wide applicability. These
systems were formally derived to describe wave
propagation to model the shallow water waves[1-3] and

Brusselator[4].

In this work, we used Laplace decomposition
algorithm(LDA) because this scheme provides the
solution in a rapidly convergent series with components
that are elegantly computed. The Laplace decomposition
algorithm was first proposed by Khuri[5-6] which is
further used by Yusufoglu[7] to solve Duffing equation
and Flgazery[8] for Falkner-Skan equation. The
modification of Laplace decomposition method

new analytical solution of foam drainage equation.

Khan and Hussain[13] applied Laplace
decomposition method on semi-infinite domain. The
restriction and improvements of Laplace decomposition
method was given by Khan and Gondal[14]. Zafar et.al.
used Laplace decomposition method to solve Burger’s
equaton[11]. It is worth mentioning that the proposed
method is an elegant combination of Laplace transform
and decomposition algorithm. The advantage of this
proposed method is its capability of combining two

equations has attracted much attention in a variety of

to examine some chemical reaction —diffusion model of

introduced by Hussain and Khan[9].Khan and
Gondal[ 12] applied Laplace decomposition method for a
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powerful methods for obtaining exact solution. The aim
of this work is to establish exact solutions or
approximate solutions of high degree of accuracy for the
system of homogeneous linear partial differential
equations.

I1. LAPLACE DECOMPOSITION
ALGORITHM

In this section, we present Laplace decomposition
algorithm(LDA)for solving the system of homogeneous
linear partial differential equations written in an operator
form

Du+K, (u,v)=0, (1
Dy +K,(u,v)=0
with initial conditions
u(x.,0)=1f(x),
V(x,0)=g(x). 2)

where D, is considered a first order partial differential
operator. K, and K, are linear operators.

The method consists of first applying the Laplace
transform to both sides of equations in system ( 1), we have

L{Du} +L{K,(u,v)} =0

L{D,v}+L{K,(uwv)}=0 (3)
Using the differentiation property of Laplace transform
and initial conditions (2) in(3), we have

L{u}=f(x)/s— I/sL{K,(wv)§ (4)

Liv}=gx)s— /s L{K,(uv)]
Operating inverse Laplace transform on both sides of (4).
we have

u(x.)=f(x)-L"{1/sL{ K,(u,v)}}

vix.=g(x)-L {I/sL{ K{uv)}} (5)

The Laplace decomposition algorithm(LDA) defines
the solutions u(x.t)and v(x.t) by the infinite series

u(x,t) =27, u, and v(x t) =Z.,V, (6)

Substituting (6) in (5), we have

5 ou, = f(x) -L'{ /s L{K, (2. u,

2o Vo) f

z::n A= g(x) = L'l { 1/3 L {K| ( z:tnun

e Vai ) (7)
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3]

In general, the recursive relation is given by:

u, = f(x) and v, = g(x) (8)
U, (%,t) =—L"{ I/s L{ K (u.v,)}}. n>0
and (9)

V(X0 =-L"{ 1/s L{ K.(u,,v,)} }. n>0

III. APPLICATIONS

In this section, some applications are given in order to
demonstrate the effectiveness of Laplace decomposition
algorithm (LDA) to solve the system of homogeneous
linear partial differential equations.

A. APPLICATION: 1

Consider the system of homogeneous linear partial
differential equations

u+v -(u—v)=0

v,—ut (u-v)=0 (10)

with initial conditions
u(x,0)=¢’, v(x.0)=¢" (11)
Taking the Laplace transform on both sides of (10) and
using the differentiation property of Laplace transform
and initial conditions (11), we have
L{u}=e€"/s -1/sL{v,} +1/sL{u-v} (12)
L{vi=e"/s+1/sL{u} - 1/sL{u-v}
Operating inverse Laplace transform on both sides of
(12), we have
u(x.t)=e'-L" {1/sL{v,} } +L" {1/sL{u-v}}
v(x,)=e"+ L' {1/s L{u}} -L"{I/s L{u-v}} (13)

Then, by using the Laplace decomposition
algorithm(LDA) which defines the solutions u(x ,t) and
V(X.,t) by the infinite series as:

u(x,t) =X7, u, and v(x,t) =37, v, (14)
and the terms u, and v, by the infinite series
u(x,t) =37 u, and v (x,t) = > i 70 (15)

Substituting (14) and (15) in (13), we have
Zoou=e-L {IsL{ 3= v, }}+L"{1/s

{25 - o)) (16)
Tev=e"+L {15 L{Z=, #,}}L*
‘:‘ 1/s L { z:.u u, - Z:—u "'"H
From (16) our required recursive relation is given by:
u,=e and
v,=¢" (17)

U(xt) = -L" {I/sL{v,} } + L"{1/s L{u-v, }},
n=0 and
VX)) = L' {I/sL{u,} } - L' {1/s L{u-v. }},

n>0 and (18)

The first few components of u (x t) and v,(x.t) by using

recursive relation (18) as follows immediately

u,=te" and v,=te" (19)
u,=¢ t/2! and v, = /2! (20)

and so on for other components. Using (14), the series

solutions are therefore given by (21)
u(x,0) =e'(1 +t+t72! + £/3! +......),

V) =e" (1 +t+t72! +13/3! ......)

that converges to the exact solutions

ux,t)=e"

vix,n)=e™" (22)

B. APPLICATION:2

Consider the system of homogeneous linear partial
differential equations
u-vt+(utyv)=0
v.—ut (utv)=0
with initial conditions
u(x,0) = sinhx, v(x,0) = coshx (24)
Taking the Laplace transform on both sides of (23) then,
by using the differentiation property of Laplace
transform and initial conditions (24), we have
L{u} =sinhx/s+1/sL{v,} -1/sL{utv}
L{v}= coshx/s+1/sL{u} -1/sL{u+v} (25)
Operating inverse Laplace transform on both sides of
(25), we have
u(x,ty =sinhx +L" {I/s L{v,}} - L"{1/s L{ut+v}}
v(x.t) = coshx + L" {1/s L{u}} -L'{1/s L{utv}}

(26)
The Laplace decomposition algorithm( LDA) defines the
solutions u(x ,t) and v(x ,t) by the infinite series

u(x,t) = X7, and v(x,t) = 2% v, (27)

(23)

and the terms u, and v, by the infinite series

u(x,t) ==, and v,(x,t) =Z> v, (28)

Substituting (27) and (28) in (26), we have

2o u=sinhx +L" {1/sL{Z7v,}}

-LY1sL{Z, u+ T2 v.))

Zov,=coshx + L" {I/sL{Z,u}}

LY L{Z u+ 3w} (29)
From (29) our required recursive relation is given by:
u, = sinhx and v, = coshx (30)

U (X)) =L"{l/sL{v_}}-L"'{I/s L{u+v, }}, n>0
and
Vaa(X ) =L {Is L{u_}}- L"{1/s L{u+v, }}, n>0
(31)

The first few components of un(x.t) and vn(x.t) by using
recursive relation (31) as follows immediately
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u,=-tcoshx and  v,=-tsinhx (32)
u,= /2! sinhx and v,=t/2!coshx (33)
u.,=-t/3!coshx and v,=-t/3!sinhx (34)

and so on for other components. Using (27), the serics
solutions are therefore given by
u(x.t)=sinhx(1 +/2! +t'/41 +...... N
coshx(t+t/3!+t/5+....cc....... Y,
v(x,t)=coshx(1 +t7/2! + /4! +...... J—
sinhx(t+t/31+£/5! +. o ieinninans )

that converges to the exactsolutions

u(x.t) =sinh(x-t) and  v(x,t)=cosh(x-t)

(35)

(36)

1V. CONCLUSION

In this paper, we have successfully developed the
Laplace decomposition algorithm (LDA) for the
solution of the system of homogeneous linear partial
differential equations. The given application showed
that the exact solution have been obtained even with just
the two (application:1) or three (application:2) first
terms of the LDA solution, which indicates that the
proposed method LDA need much less computational
work. The proposed scheme can be applied for the
system more than two homogencous linear partial
differential equations.
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