

Solution of Linear Volterra Integro-Differential Equations of Second Kind by Using Laplace Decomposition Algorithm

*Sudhanshu Aggarwal¹, Raman Chauhan², Nidhi Sharma³

^{1,2,3}Assistant Professor, Department of Mathematics,

Noida Institute of Engineering & Technology, Greater Noida, U.P., India

mathsjunction@gmail.com, raman28chauhan@gmail.com, 6nidhisharma@gmail.com

Abstract: In this paper, Laplace decomposition algorithm is introduced for the approximate analytical solution of linear Volterra integro-differential equations of second kind. The technique is described and illustrated with some numerical applications. The results assert that this scheme is rapidly convergent and give the exact result using only few terms of its iteration scheme.

Keywords: Laplace decomposition algorithm, linear Volterra integro-differential equations, Laplace transform, inverse Laplace transform, convolution theorem.

I INTRODUCTION

Mathematical modeling of real life problems usually results in functional equations e.g. partial differential equations, integral and integro-differential equations, stochastic equations and others. In particular integro-differential equations arise in many scientific and engineering applications such as glass forming process, heat transfer, diffusion process, in general neutron diffusion, nano-hydrodynamics and biological species coexisting together with increasing and decreasing rates of generating and wind ripple in the desert.

Volterra studied the hereditary influences when he was examining a population growth model. The research work resulted in a specific topic, where both differential and integral operators appeared together in the same equation. This new type of equations was termed as Volterra integro-differential equations [1-5] given in the form

$$v^n(x) = f(x) + \lambda \int_0^x k(x,t)v(t)dt \quad (1)$$

where $v^n(x) = \frac{d^n v}{dx^n}$. Because the resulted equation (1) combines the differential and integral operators, then it is necessary to define initial conditions $v(0), v'(0), \dots, v^{(n-1)}(0)$ for the determination of the particular solution $v(x)$ of the Volterra integro-differential equation (1).

Any Volterra integro-differential equation is characterized by the existence of one or more of the

derivatives $v'(x), v''(x), v'''(x), \dots$ outside the integral sign. Volterra integro-differential equations may be observed when we convert an initial value problem to an integral equation by using Leibnitz rule. In this work, we used Laplace decomposition algorithm because this scheme provides the solution in a rapidly convergent series with components that are elegantly computed. The Laplace decomposition algorithm was first proposed by Khuri [6-7] which is further used by Yusufoglu [8] to solve duffing equation and Elgazery [9] for Flalkner-skan equation. The modification of Laplace decomposition method introduced by Hussain and Khan [10]. Zafar et. al. [11] used Laplace decomposition method to solve Burger's equation. Khan and Gondal [12] applied Laplace decomposition method for a new analytical solution of foam drainage equation. Khan and Hussain [13] applied Laplace decomposition method on semi-infinite domain. The restrictions and improvements of Laplace decomposition method was given by Khan and Gondal [14]. Sudhanshu et. al. [15] applied Laplace decomposition algorithm to solve the system of homogeneous linear partial differential equations. Sudhanshu et. al. [16] used Laplace decomposition algorithm to solve the system of weakly singular Volterra integral equations. A new application of Laplace decomposition algorithm for handling linear Volterra integral equations was given by Sudhanshu et. al. [17].

It is worth mentioning that the proposed method is an elegant combination of Laplace transform and decomposition algorithm. The advantage of this proposed method is its capability of combining two powerful methods for obtaining exact solution. The aim of this work is to establish exact solutions or approximate solutions of high degree of accuracy for Linear Volterra integro-differential equations of second kind.

II LAPLACE DECOMPOSITION ALGORITHM

In this section, we present Laplace decomposition algorithm for solving Linear Volterra integro-differential equations of second kind given by (1). In this work, we will assume that the kernel $k(x,t)$ of (1) is a difference

*Author for correspondence

kernel that can be expressed by difference (x-t). The linear Volterra integro-differential equation of second kind (1) can thus be expressed as

$$v^n(x) = f(x) + \lambda \int_0^x k(x-t)v(t)dt \quad (2)$$

With

$$v(0) = a_0, v'(0) = a_1, \dots, v^{(n-1)}(0) = a_{n-1} \quad (3)$$

Applying the Laplace transform to both sides of (2) and using (3), we get

$$p^n L\{v(x)\} = p^{n-1}a_0 - p^{n-2}a_1 - \dots - a_{n-1} + L\{f(x)\} + \lambda L\left\{\int_0^x k(x-t)v(t)dt\right\} \quad (4)$$

Using convolution theorem of the Laplace transform, we have

$$L\{v(x)\} = \frac{a_0}{p} + \frac{a_1}{p^2} + \dots + \frac{a_{n-1}}{p^n} + L\{f(x)\} + \lambda L\{k(x)\}L\{v(x)\} \quad (5)$$

Operating inverse Laplace transform on both sides of (5), we have

$$v(x) = a_0 + \frac{a_1 x}{1!} + \dots + a_{n-1} \frac{x^{n-1}}{(n-1)!} + f(x) + \lambda L^{-1}\left\{L\{k(x)\}L\{v(x)\}\right\} \quad (6)$$

The Laplace decomposition algorithm assumes the solution $v(x)$ can be expanded into infinite series as

$$v(x) = \sum_{n=0}^{\infty} v_n(x) \quad (7)$$

By substituting (7) in (6), the solution can be written as

$$\sum_{n=0}^{\infty} v_n(x) = a_0 + \frac{a_1 x}{1!} + \dots + a_{n-1} \frac{x^{n-1}}{(n-1)!} + f(x) + \lambda L^{-1}\left\{L\{k(x)\}L\left\{\sum_{n=0}^{\infty} v_n(x)\right\}\right\} \quad (8)$$

In general, the recursive relation is given by

$$v_0(x) = a_0 + \frac{a_1 x}{1!} + \dots + a_{n-1} \frac{x^{n-1}}{(n-1)!} + f(x) \quad (9)$$

$$v_{n+1}(x) = \lambda L^{-1}\left\{L\{k(x)\}L\left\{\sum_{n=0}^{\infty} v_n(x)\right\}\right\}, \quad n \geq 0 \quad (10)$$

III APPLICATIONS

In this section, some applications are given in order to demonstrate the effectiveness of Laplace decomposition algorithm for Linear Volterra integro-differential equations of second kind.

A. APPLICATION:1

Consider Linear Volterra integro-differential equations of second kind

$$v'(x) = 2 + x - \frac{x^3}{3!} + \int_0^x (x-t)v(t)dt \text{ with } v(0) = 1 \quad (11)$$

Applying the Laplace transform to both sides of (11) and using initial condition, we get

$$L\{v(x)\} = \frac{1}{p} + \frac{2}{p^2} + \frac{1}{p^3} - \frac{1}{p^5} + \frac{1}{p} L\left\{\int_0^x (x-t)v(t)dt\right\} \quad (12)$$

Using convolution theorem of the Laplace transform, we have

$$L\{v(x)\} = \frac{1}{p} + \frac{2}{p^2} + \frac{1}{p^3} - \frac{1}{p^5} + \frac{1}{p^3} L\{v(x)\} \quad (13)$$

Operating inverse Laplace transform on both sides of (13), we have

$$v(x) = 1 + 2x + \frac{x^2}{2!} - \frac{x^4}{4!} + L^{-1}\left\{\frac{1}{p^3} L\{v(x)\}\right\} \quad (14)$$

The Laplace decomposition algorithm assumes the solution $v(x)$ can be expanded into infinite series as

$$v(x) = \sum_{n=0}^{\infty} v_n(x) \quad (15)$$

By substituting (15) in (14), the solution can be written as

$$\sum_{n=0}^{\infty} v_n(x) = 1 + 2x + \frac{x^2}{2!} - \frac{x^4}{4!} + L^{-1}\left\{\frac{1}{p^3} L\left\{\sum_{n=0}^{\infty} v_n(x)\right\}\right\} \quad (16)$$

From (16), our required recursive relations are given by

$$v_0(x) = 1 + 2x + \frac{x^2}{2!} - \frac{x^4}{4!} \quad (17)$$

$$v_{n+1}(x) = L^{-1}\left\{\frac{1}{p^3} L\{v_n(x)\}\right\}, n \geq 0 \quad (18)$$

The first few components of $v_n(x)$ by using recursive relation (18) as follows immediately

$$v_1(x) = \frac{x^3}{3!} + \frac{2x^4}{4!} + \frac{x^5}{5!} - \frac{x^7}{7!} \quad (19)$$

$$v_2(x) = \frac{x^6}{6!} + \frac{2x^7}{7!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} \quad (20)$$

and so on for other components. Using (15), the series solution is therefore given by

$$v(x) = x + \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} + \dots\right) \quad (21)$$

that converges to the exact solution

$$v(x) = x + e^x \quad (22)$$

B. APPLICATION:2

Consider Linear Volterra integro-differential equations of second kind

$$v''(x) = 1 + x + \int_0^x (x-t)v(t)dt \text{ with } v(0) = 1, v'(0) = 1 \quad (23)$$

Applying the Laplace transform to both sides of (23) and using initial conditions, we get

$$L\{v(x)\} = \frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \frac{1}{p^4} + \frac{1}{p^2} L\left\{\int_0^x (x-t)v(t)dt\right\} \quad (24)$$

Using convolution theorem of the Laplace transform, we have

$$L\{v(x)\} = \frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \frac{1}{p^4} + \frac{1}{p^4} L\{v(x)\} \quad (25)$$

Operating inverse Laplace transform on both sides of (25), we have

$$v(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + L^{-1}\left\{\frac{1}{p^4} L\{v(x)\}\right\} \quad (26)$$

The Laplace decomposition algorithm assumes the solution $v(x)$ can be expanded into infinite series as

$$v(x) = \sum_{n=0}^{\infty} v_n(x) \quad (27)$$

By substituting (27) in (26), the solution can be written as

$$\sum_{n=0}^{\infty} v_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + L^{-1}\left\{\frac{1}{p^4} L\left\{\sum_{n=0}^{\infty} v_n(x)\right\}\right\} \quad (28)$$

From (28), our required recursive relations are given by

$$v_0(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} \quad (29)$$

$$v_{n+1}(x) = L^{-1}\left\{\frac{1}{p^4} L\{v_n(x)\}\right\}, n \geq 0 \quad (30)$$

The first few components of $v_n(x)$ by using recursive relation (18) as follows immediately

$$v_1(x) = \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} \quad (31)$$

$$v_2(x) = \frac{x^8}{8!} + \frac{x^9}{9!} + \frac{x^{10}}{10!} + \frac{x^{11}}{11!} \quad (32)$$

and so on for other components. Using (27), the series solution is therefore given by

$$v(x) = \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} + \dots \dots \dots \right) \quad (33)$$

that converges to the exact solution

$$v(x) = e^x \quad (34)$$

APPLICATION : 3

Consider Linear Volterra integro-differential equations of second kind

$$\begin{aligned} v''(x) &= 1 + x - 2x^2 \\ &+ \int_0^x (x-t)v(t)dt \quad \text{with } v(0) = 5, v'(0) \\ &= 1, v''(0) \\ &= 1 \end{aligned} \quad (35)$$

Applying the Laplace transform to both sides of (35) and using initial conditions, we get

$$\begin{aligned} L\{v(x)\} &= \frac{5}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \frac{1}{p^4} - \frac{4}{p^6} \\ &+ \frac{1}{p^5} L\left\{\int_0^x (x-t)v(t)dt\right\} \end{aligned} \quad (36)$$

Using convolution theorem of the Laplace transform, we have

$$\begin{aligned} L\{v(x)\} &= \frac{5}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \frac{1}{p^4} - \frac{4}{p^6} \\ &+ \frac{1}{p^5} L\{v(x)\} \end{aligned} \quad (37)$$

Operating inverse Laplace transform on both sides of (37), we have

$$\begin{aligned} v(x) &= 5 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{4x^5}{5!} \\ &+ L^{-1}\left\{\frac{1}{p^5} L\{v(x)\}\right\} \end{aligned} \quad (38)$$

The Laplace decomposition algorithm assumes the solution $v(x)$ can be expanded into infinite series as

$$v(x) = \sum_{n=0}^{\infty} v_n(x) \quad (39)$$

By substituting (39) in (38), the solution can be written as

$$\begin{aligned} \sum_{n=0}^{\infty} v_n(x) &= 5 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{4x^5}{5!} \\ &+ L^{-1}\left\{\frac{1}{p^5} L\left\{\sum_{n=0}^{\infty} v_n(x)\right\}\right\} \end{aligned} \quad (40)$$

From (40), our required recursive relations are given by

$$v_0(x) = 5 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{4x^5}{5!} \quad (41)$$

$$v_{n+1}(x) = L^{-1}\left\{\frac{1}{p^5} L\{v_n(x)\}\right\}, n \geq 0 \quad (42)$$

The first few components of $v_n(x)$ by using recursive relation (40) as follows immediately

$$v_1(x) = \frac{5x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} + \frac{x^8}{8!} + \frac{x^9}{9!} - \frac{4x^{10}}{10!} \quad (43)$$

$$\begin{aligned} v_2(x) &= \frac{5x^{10}}{10!} + \frac{x^{11}}{11!} + \frac{x^{12}}{12!} + \frac{x^{13}}{13!} + \frac{x^{14}}{14!} \\ &- \frac{4x^{15}}{15!} \end{aligned} \quad (44)$$

and so on for other components. Using (39), the series solution is therefore given by

$$\begin{aligned} v(x) &= 4 + \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} \right. \\ &\left. + \dots \dots \dots \right) \end{aligned} \quad (45)$$

that converges to the exact solution

$$v(x) = 4 + e^x \quad (46)$$

IV CONCLUSIONS

In this paper, we have successfully developed the Laplace

decomposition algorithm for the solution of linear Volterra integro-differential equations of second kind. The given applications showed that the exact solution have been obtained even with just first three terms of the Laplace decomposition algorithm solution, which indicates that the proposed method Laplace decomposition algorithm need much less computational work.

REFERENCES

- [1] Volterra, V. (1959) Theory of functional of integral and integro-differential equations, Dover, New York.
- [2] Moiseiwitsch, B.L. (1977) Integral equations, Longman, London and New York.
- [3] Chambers, L.G. (1976) Integral equations, A short course, International text book company, London.
- [4] Churchhouse, R.F. (1981) Handbook of applicable mathematics, Wiley, New York.
- [5] Wazwaz, A.M. (1997) A first course in integral equations, World scientific, Singapore.
- [6] Khuri, S.A. (2001) A Laplace decomposition algorithm applied to class of non-linear differential equations, *J Math. Appl.* 4, 141-155.
- [7] Khuri, S.A. (2004) A new approach to Bratu's problem, *Appl. Math. Comput.* 147, 131-136.
- [8] Elcin Yusufoglu (Agadjanov) (2006) Numerical solution of Duffing equation by the Laplace decomposition algorithm, *Appl. Math. Comput.* 177, 572-580.
- [9] Elgazery, S.N. (2008) Numerical solution for the Falkner-Skan equation, *Chaos, Solitons and Fractals*, 35, 738-746.
- [10] Hussain, M. and Khan, M. (2010) Modified Laplace decomposition method, *Appl. Math. Sci.* 4(36), 1769-1783.
- [11] Zafar, Z.A., Pervaiz, A. and Ahmed, M.O. (2013) Solution of Burger's equation with help of Laplace decomposition method, *Pak. J. Engg. & Appl. Sci.* 12, 39-42.
- [12] Khan, M. and Gondal, M.A. (2010) A new analytical solution of foam drainage equation by Laplace decomposition method, *Adv. Res. in Diff. Eqn.* 2, 53-64.
- [13] Khan, M. and Hussain, M. (2011) Application of Laplace decomposition method on semi-infinite domain, *Numer. Algor.* 56, 211-218.
- [14] Khan, M. and Gondal, M.A. (2011) Restrictions and improvements of Laplace decomposition method, *Adv. Res. Sci. Comput.* 3, 8-14.
- [15] Aggarwal, S., Pandey, R.K. and Chauhan, R. (2015) Application of Laplace decomposition algorithm to solve the system of homogeneous linear partial differential equations, *NIET J. Engg. & Tech.* 6, 21-23.
- [16] Aggarwal, S., Bindal, G. and Yadav, M.K. (2015) Application of Laplace decomposition algorithm (LDA) to solve the system of weakly singular Volterra integral equations, *NIET J. Engg. & Tech.* 6, 24-26.
- [17] Aggarwal, S., Gupta, A.R. and Swarup, C. (2015) A new application of Laplace decomposition algorithm for handling linear Volterra integral equations, *NIET J. Engg. & Tech.* 6, 27-29.

Sudhanshu Aggarwal received his M.Sc. degree from M.S. College, Saharanpur in 2007. He has also qualified CSIR NET examination (June-2010, June-2012, June-2013, June-2014 & June-2015) in Mathematical Sciences. He is working as an Assistant Professor in Noida Institute of Engineering & Technology, Greater Noida. He is equipped with an extraordinary caliber and appreciable academic potency. He has around nine years of teaching experience at various engineering colleges affiliated to AKTU. His fields of interest include Integral Transform Methods, Differential and Partial Differential Equations, Integral Equations and Number Theory.

Nidhi Sharma received her M.Sc. degree from Banasthali University Rajasthan in 2015. She is working as an Assistant Professor in Noida Institute of Engineering & Technology, Greater Noida. She has also qualified IIT Jam exam (2013). She has published many research papers in national and international journals. Her fields of interest include Optimization, Fuzzy Logic and Topological Spaces.

Raman Chauhan completed MSc. (Mathematics) from Indian Institute of Technology, Roorkee in 2011. He is working at NIET, Greater Noida for the last three years as a dynamic, successful and responsible faculty member in the department of Mathematics. He has also qualified IIT Jam exam (2009) and Gate exam (2011, 2013, 2014 & 2015).