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Abstract: In this paper, Laplace decomposition
algorithm is introduced for the approximate analytical
solution of linear Volterra integro-differential
equations of second kind. The technique is described
and illustrated with some numerical applications. The
results assert that this scheme is rapidly convergent
and give the exact result using only few terms of its
iteration scheme,
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[ INTRODUCTION

Mathematical modeling of real life problems usually
results in functional equations e¢.g. partial differential
equations, integral and integro-differential equations,
stochastic equations and others. In particular integro-
differential equations arise in many scientific and
engineering applications such as glass forming process,
heat transfer, diffusion process, i general neutron
diffusion, nano-hydrodynamics and biological species
coexisting together with increasing and decreasing rates
of generating and wind ripple in the desert.

Volterra studied the hereditary influences when he was
examining a population growth model. The research work
resulted 1n a specific topic, where both differential and
integral operators appeared together in the same equation.
This new type of equations was termed as Volterra
integro-differential equations [1-5] given in the form

v

.
' (x) = f(x)+4 [ k(x, t)u(t)de (1)
where v"(x) === . Because the resulted equation (1)
combines the differential and integral operators, then it is
necessary to define initial conditions v(0).v"(0),........0"
"(0) for the determination of the particular solution v(x) of

the Volterra integro-differential equation (1),
2 q

Any Volterra
characterized by the existence of one or more of the

integro-differential equation is
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S

derivatives v'(x). v (x)a
Volterra integro-differential equations may be observed
when we convert an initial value problem to an integral

(x)...... outside the integral sign.

equation by using Leibnitz rule. In this work, we used
Laplace decomposition algorithm because this scheme
provides the solution in a rapidly convergent series with
components that are elegantly computed. The Laplace
decomposition algorithm was first proposed by Khuri [6-
7] which is further used by Yusufoglu [8] to solve duffing
cquation and Elgazery [9] for Flalkner-skan equation. The
modification of Laplace decomposition method
introduced by Hussain and Khan [10]. Zafar et. al. [11]
used Laplace decomposition method to solve Burger’s
equation. Khan and Gondal [12] applied Laplace
decomposition method for a new analytical solution of
foam drainage equation. Khan and Hussain [13] applied
Laplace decomposition method on semi-infinite domain.
I'he restrictions and improvements of Laplace
decomposition method was given by Khan and
Gondal[14]. Sudhanshu et. al. [15] applied Laplace
decomposition algorithm to solve the system of
homogeneous linear partial differential equations.
Sudhanshu et. al. [16] used Laplace decomposition
algorithm to solve the system of weakly singular Volterra
integral equations. A new application of Laplace
decomposition algorithm for handling linear Volterra
integral equations was given by Sudhanshu et. al. [17].

It is worth mentioning that the proposed method is an
elegant combination of Laplace transform and
decomposition algorithm. The advantage of this proposed
method is its capability of combining two powerful
methods for obtaining exact solution. The aim of this work
is to establish exact solutions or approximate solutions of
high degree of accuracy for Lincar Volterra integro-
differential equations of second kind.

I LAPLACE DECOMPOSITION ALGORITHM

In this section, we present Laplace decomposition
algorithm for solving Linear Volterra integro-differential
equations of second kind given by (1). In this work, we
will assume that the kernel k(x.t) of (1) is a difference
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kernel that can be expressed by difference (x-t). The linear
Volterra integro-differential equation of second kind (1)
can thus be expressed as

v(x) = f(x) + /If k(x — tv(t)dt (2)
With !

v(0) = ay, v'(0) = ay, ..., v (0) = a,_, 3)

Applying the Laplace transform to both sides of (2) and
using (3), we get

p"L{v(x)} = p"la, —a,- + L{f ()}
+AL{] ke(x = t)v(t)dt} (4)
0

=2
=P a,

Using convolution theorem of the Laplace transform,
we have
ay fpn—y "
L{v(x)} =—+p~+ "+T+ L{f ()} (5)
+ AL{k (o) L{v ()}

Operating inverse Laplace transform on both sides of
(5), we have

S o +ay,
1! (n—
+ AL LIk G L{v(0)}}
The Laplace decomposition algorithm assumes the
solution v(x) can be expanded into infinite series as

v(x) = Z v, (x) (7)

n=0

T — 4 f(x)  (0)

By substituting (7) in (6), the solution can be written as

n—1

— a;x : o
HZ"LIU) =dgy +T+ L ‘.4.<.+a",1m+ f{x)
PO I Ty ®)
Al tLI_I\(l,)}I.[; u, ()}
In general, the recursive relation is given by
Na a,x =0
v“(x):u,,ﬁtT-y..v ......... 0y ‘-(n——l).‘ (9)
F f{x)
Vit 6) = AL !L(Mx)}l,{z v,,(x)}j, (10)
r={
n=0

I  APPLICATIONS
In this section, some applications are given in order to
demonstrate the effectiveness of Laplace decomposition
algorithm for Linear Volterra integro-differential
equations of second kind.

A. APPLICATION:1

Consider Linear Volterra integro-differential equations of
second kind

¥

v (x) =24x—- ‘3“[“
¥

+f (x=)v(Odt withv(0) (1)
1]

=1

Applying the Laplace transform to both sides of (11) and
using initial condition, we get
L{v(x)} = S e -'/(J‘ - Ov(tdt)  (12)
e et e )
Using convolution theorem of the Laplace transform, we
have

i 12 1
A

Operating inverse Laplace transform on both sides of
(13),wehave
é 9

pon X 1
v(x) =1 +21+-2—|—$+/

The Laplace decomposition algorithm assumes the
solution v(x) can be expanded into infinite series as

L{l (x)} (13)

1; L{n(xnf (14)

v(x) =Z v, (x) (15)

n=0

By substituting (15) in(14), the solution can be written as
E 2 4 1 (<
Zvn(x) =1+42x+ % ~ % +171 {FL Z vn(x)!} (16)
n=0 n=0

From (16), our required recursive relations are given by

vy (x) = 1+2x+ = ;—, (17)
Vygq () = L1 L{rn(r)}j n=0 (18)

The first few components of v (x) by using recursive
relation(18) as follows immediately

¥ 2xt xS x’
R T (19)
xb ZY xt‘l xil?
PRI A 20
) =gt St 0)

and so on for other components. Using (15), the series
solution is therefore given by
xE X] x«i ‘,5 \'6 T

> X ] x
L’(x)—x+(]+ﬁ+i+ +$+S—+€!~+?!~ @1)

that converges to the exact solution

v(x) = x +e* 22)
B. APPLICATION:2

Consider Linear Volterra integro-differential equations of
second kind .
vi(x)=1+x +f (x = tlv(t)de with v(0) = 1,v'(0)
0 (23)
=1
Applying the Laplace transform to both sides of (23) and
using initial conditions, we get
s SO S
Lvx)i=—+=+—+—
p p* p' p!

1 ) (24)
+ —ZL{f (x = Dvlt)dt]
P 0
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Using convolution theorem of the Laplace transform. we
have

Liv(x)} 1-(- : + : +
{x = — — _

popc p
Operating inverse Laplace transform on both sides of
25). we have

1
—4+I%L{v(_r)} (25)

2 X'{
vla) =14 +5+y+l'

The Laplace decomposition algorithm assumes the
solution v(x) can be expanded into infinite series as

v(x) = z v, (x)

ni=0

1
—4I.{1’(x)}} (26)

(27)

By substituting (27) in (26), the solution can be written as
: r x¢ x3
T + ;—' + —"

: | (28)
1
+ L {p—" L {Z vn(.\‘)‘}

n=0

Z vx)=14+—

n=0

From (28), our required recursive relations are given by

X (29)
Uc(\)— 1+Y+—2T+§ g

UJH'I().) =L (30)

ij{L‘,l(,X')} Ly 2l

The first few components of v (x) by using recursive
relation (18) as follows immediately

4 X.": 1.6 ’r',’ ;
Ll(,‘() 4'+—5—+a+7 E2Y) .
x8 r‘l xl” )‘11
g X K R 3
O =gtatmtm o)

and so on for other components. Using (27), the series
solution is therefore given by

o (1 X ,r“+,r‘ © 5 xs+x"+x7

() =(l+—+—F—+—F+=—+—+ =
va=\trntatatatatat T (33)
that converges to the exact solution

v(x) = e* (34)

APPLICATION : 3

Consider Linear Volterra integro-differential equations of

second kind

p'(x) =1+x—2x°

+ { (x = (t)at with v(0) =5,v(0)
‘0

1,1 (0)

1

(35)

n

Applying the Laplace transform to both sides of (35) and
using initial conditions, we get

8 1 1 1 4
vy == —=+%—H—F<==
poptoptoptop

+p—3L‘f (x —t)v(c)de} (36)
0

Using convolution theorem of the Laplace transform, we
have
= e 5 1 1 1 4
Liv(x)} :—+f+7+—4—7
p pc P p P
1 (37)
+EL{F(X)J
Operating inverse Laplace transform on both sides of
(37), we have
) .o .+\.'.-.’+x:4+;\:1 4_1.5
Wt 3 R 5

1 (38)
+ 7Y — L{v(x)}

’
The Laplace decomposition algorithm assumes the
solution v(x) can be expanded into infinite series as

1

Z v, (x)

=0

v(x) = (39)
By substituting (39) in (38), the solution can be written as

R T A
Z!,’,,[.Y)—5+I‘!'+’2—!'+§+H—?

IR IAN
+ L1 {;.—L 1;’ 17,,(x)]}

From (40), our required recursive relations are given by

n=0

(40)

¥ X X ah
S+ +7 EIR TR

e P—S L h"lt(x} }

vo(x) = (41)

l’u-H(xJ =1 N2 { (42]

The first few components of v (x) by using recursive
relation (40) as follows immediately

5x> %% x7 x%  x7 fal?

1'1(x):—+y+ﬁ+ §1'+9—!_W (43)
l"x'lﬂ xll 1.‘12 I].’i 1_14
) I,
e T TR T TR F TR ETRETY 443
41,1!.
~ 15

and so on for other components. Using (39), the series
solution istherefore given by

3 -+ 5 6

®)=4+|145 +rz r'+r LY. +x;
vix) = 7 Y —+6' 7
(45)
that converges to the exact solution
v(x)=4+e’ (46)

IV CONCLUSIONS

In this paper, we have successfully developed the Laplace
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decompoasition algorithm for the solution of linear
Volterra integro-differential equations of second kind.
The given applications showed that the exact solution
have been obtained even with just first three terms of the
Laplace decomposition algorithm solution, which
indicates that the proposed method Laplace
decomposition algorithm need much less computational
work.
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