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Abstract: In the present work, a dynamic model is
developed for the Multi-effect evaporator (MEE) to
study the transient behavior of the system. Each
effect in the process is represented by some variables
which are related to the energy and material balance
equations for the feed, product and liquor flow.
Backward feed is used for the development of the
model for six effect evaporator system. For the steady
state and dynamic simulation, the ‘fsolve’ and
‘ODE45’ solvers in MATLAB source code is used
respectively.
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L. INTRODUCTION

Some researchers have solved the mathematical models
of MEE system of various process industries by using
different solution techniques to obtain stcady state
simulation [3-20]. Some of them also have performed
steady state simulation for MEE system of the paper
industry [1], [2], [3]. [9-11]. [16-17], [20] & [29-34] by
solving the models using numerical techniques. The
dynamic behavior of two or three effect MEE systems in
process industries like sugar, food, desalination and
paper etc. is studied by few researchers [13] and [21-26].
Stefanov and Hoo [27] developed a distributed
parameter model of black liquor falling film evaporator,
based on first principles knowledge of fluid dynamics
and heat transfer processes for evaporation side of the
single plate (lamella) of a falling film evaporator.
Stefanov and Hoo [28] further expanded a single plate
model to develop a fundamental model of a falling film

evaporator that accounted for the condensation side of

the plate, the heating/flashing at the evaporator entrance,
the evaporator inventory, mixing and recirculation flows
but neglecting the effect of BPR.

In the present investigation. an attempt has been made for
the study of dynamic responses for tubular type falling
film MEE system. The lumped parameter model (System
of ordinary differential equations) of sextuple effect
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falling film evaporator system of a paper industry is
developed by using unsteady state energy and material
balance equations and Physico-thermal properties of
black liquor including the effect of boiling point rise for
backward feed sequence. The transient behavior of the
system is studied by disturbing the input parameters like
feed flow rate, feed concentration, feed temperature and
steam temperature. For the steady state and dynamic
simulation ‘fsolve’ and ‘ode45” solver in MATLAB
source code is used respectively.

II. MATHEMATICAL MODELLING

The Mathematical modelling is carried out for sextuple
effect falling film evaporator system with backward feed.
In backward feed evaporator system, the steam input is
given in the first effect and the feed liquor input is in the
last effect as shown in the Fig. 1.

Model equations arc developed for ith effect using
material and energy balance equations as shown in [32].
The equations stating the physical properties of the black
liquor are taken from [32]. It is assumed that the vapor
generated by the process of concentration of black liquor
is saturated. It is also assumed that the energy and mass
accumulation in the vapor lump is very small as compared
to the enthalpy of the steam and can be neglected.

Material balance for liquor in the i effect:

DM, )= Wi, - W1, - W,
it (1)

Energy balance for liquor in the i" effect: (2)

dik\ﬂ‘(t)‘hl )=WL hl  —WILhl —=Wvhv, +Wv, hv_ -Wv hc_
t

where Q is the rate of heat transfer and also
Q=UA,(Tv_,-Tv,-BPR))

shell area of the evaporator and Li is the liquor level fori”
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shell area of the evaporator and L, is the liquor level for i*
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Fig. 1: Flow diagram of Sextuple Backward feed evaporator

Material balance for solids in ith effect:

3
X, - WIX, €l

E(Ml,n‘;*X.(n):w
dt

The vapor and liquor in ith effect are in equilibrium and
the relation for the liquor and vapor temperature is
defined in terms of boiling pointrise (BPR) is as follows:

T1,=Tv + BPR, )

where boiling point rise (BPR) is a function of
temperature and solid concentration

Differentiating equation (4) with respect to time we gel

d d (
—TL (1) =| —=Tv () ] 1+
dt @ (dx e |

£oa \ fa X 5
——BPR, }h L‘BPRll(} '
\ETv ,J \ X At /(3)

M, can be written as:
Ml = AL P (6)

where pi is the density of the liquor for ith effect, which is
the function of temperature and solid concentration, A is
the effect. Differentiating equation (6) with respect to
time

d

—MI (1) = AL (1) ip, ‘+Ap‘\ E-LJ‘.I) '
dt vdt Cdt / (7)

Since pi is a function of temperature Tl and concentration
X, this equation reduces to equation (8) by substituting of
d TLit) from equation (5) and rearranging the terms.
t '

d d ‘ (4 ) 7 I d
;Ml,u)m\p,l —L,(n‘\'rAL‘m‘—p HH_—BPRQ' aT\gﬂ)!

(& (8 \

\ (2 4
oo | = BPR, |4 =X, 0 | (8)

+ AL (1)1 -
O\ =" \ax ) ‘\(\' ‘I dt

(omparmg the resultant differential equation (8) with
equation (1) we get

c1=c2‘L%L,uﬂ+ z{inmjw{ X(n] )
. ) ;

where
CI=WI,-WI-W
C2 = Ap,

cs o o Yoo (soem )|

AL .m{bil P, ](LBPR J+ [clxp)}

Enthalpy is a function of temperature Differentiating

iTl‘m

MI(t)*hl (1) with respect to time and substituting dt

—d—Ml,m

from equation (5) and dt from the equation (8)
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l_IM]"“ Jhl, »\ﬂ:m’ -AAhIJ |- -"‘i‘l"l‘l —T..(t ] + AT ,ml1 + 5o BPR ]

Jp,[th ] [ P, lhl —T'. m |+ AL m[ d Xun}
| - L ai ar

‘1; = "—HE’R ’+p[—hl ]+th-—“—¢ ]{ SR, ]+ = ]hl.

(10)
Comparing the resultant differential equation (10) with
equation (2) we get

! \ -
Cs= {iL,m]u‘?‘-d-rv,m]wtcg(-d—x m]
d . L dt /) \dt p

i

where
C5= W1, hl,, — WLhL - Wy hy, + Wy, by, - Wy, b,
C6 = Ap.hl.
(= ALJ:)ELHJ n BPR,} p,.li %m. *hJ | (fn . 1|
C8=Al ,np,{ﬁm |%m1 J*[%’”' :|I-+.-v\1 |[.:_T] | ézame, J+| {.

Finally differentiating MI(t)*X (t) with respect to time
and substituting the value of % M (1 from equation (8)
and rearranging the equation and representing it in the
form of coefficients

where
L‘Q:C]({ iL,m ’+CI I(ET\'I|1_|]+L‘I2‘( a X_{n)
L dt y \dt Lt

(12)

C9=WI, X, - WX,

C10 = Ap X,

Cll = AL,X," —‘lp, }-‘1- ’LBPR.]]
© ‘ \F'T\'

Cl2=AL [p +\]|—-p J—BPRJ [“p p

Thus the equations (9), (11) and (12) form a set of
differential equations representing the liquor flow inside
the evaporator and the solid content of the liquor for the
ith effect. These final equations, represents the dynamics
of multi-effect evaporators, derived from basic energy
and mass balance equations and using various terms
related to physical properties of black liquor, water and
steam like density and specific heat of the liquor, boiling
point rise (BPR), enthalpy of water and saturated steam.
Further equations are applied to all the six effects for i =
1,2,3,4,5and 6.

I11. STEADY STATE SIMULATION

For obtaining the steady state solution of the sextuple

effect evaporator system there is a need to solve the
system of nonlinear simultaneous equations given by (9),
(11) and (12) under steady state conditions. The detailed
study of steady-state simulation is given in our earlier
work Kumaretal. [31].

33
IV. DYNAMIC SIMULATION

For the dynamic simulation first order nonlinear
differential equations (8), (9) and (10) are solved
simultaneously in the same order for all the six effects of
the backward feed sextuple effect evaporator system.
Steady-state solution of the model provides the initial
values of the system variables at time, t = 0. The Solution
of such types of simultancous nonlinear ordinary
differential equations is extremely intricate in nature even
by using sophisticated numerical techniques. In the
present investigation, an attempt has been made for
dynamic simulation for tubular type falling film MEE
system with split feed sequence by using “ode45’ solver in
MATLAB source code respectively.

V. RESULTS AND DISCUSSION
A. Effect of varying feed flow rate

Since MEE system is in backward feed, hence the input
liquor enters the evaporator system from the last effect.
Thus for the variation in the feed flow rate the disturbance
is applied in the last effect. The effect of +10% step input
in feed flow rate on the temperature and concentration of
last (6") and first (1*) effects are shown in the Fig. 3 to Fig.
4 respectively. The temperature and concentration of both
the effects show an increase or decrease with decrease or
increase in the feed flow rate. It is obvious as fresh steam
supply rate is constant and water to evaporate and
decreases per unit time, The Time constant (TC) for each
plot is obtained and shown in the plot. TC indicates that
response time for temperature change is much less than
that of concentration change. Also, the steady state in 6th
effect is achieved at a faster rate than the 1st effect. This is
noticeable as in backward feed sequence; feed enters first
in the 6th effect, so the disturbance dampened out in the
6th effect at the fasterrate.

Varjation in the Temperature of 6th effect with 10°% decrease in feed flow rate
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Figure 3 Response of 6th effect by disturbing + 10% in the
feed flow rate
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Figure 4. Response of Ist effect by disturbing = 10%
in the feed flow rate
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B. Effect of varying feed concentration

For the variation in the feed concentration, the disturbance
is applied in the last effect. The effect of +£10% step input
in feed concentration on the temperature and
concentration of last and the first effect are shown in the
Fig. 5 to Fig. 6 respectively. The dynamic behavior of
effect’s temperature on disturbances in feed concentration
shows a slight but insignificant change in temperature.
However the change. it observed is unidirectional i.¢. the
temperature increases irrespective of increase or decrease
in feed concentration. The changes in product
concentration of both the effect show increase or decrease
according to as the feed concentration is increase or
decrease. This is because the fact that AT across the
evaporator system remains constant and vapor-liquid
equilibrium of each effect remains almost unchanged for
the optimum performance. Time constant shown in the
figures indicates that response time for temperature
change is much less than that of concentration change.
Since the feed is backward thus, the steady state in 6th
effect is achieved at a faster rate than the Isteffect.

Vaiation in the Temperatute of 6th effect with 10% decraasa in feed concentration
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Figure 5. Response of 6th effect by disturbing + 10%
in the feed concentration
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Figure 6. Response of st effect by dlslurbmg + 10% in the
feed concentration

C. Effect of varying steam temperature

In backward feed MEE system, live steam enters in the
first effect. Thus for the variation in the steam
temperature, the disturbance is applied in the first effect.
The effect of £10% step input in steam temperature on the
temperature and concentration of last and first effects are
shown in the Fig. 7 to Fig. & respectiv ely. The 10% change
in steam temperature results in increase or decrease in the
temperature of both the effects before obtaining the steady
state for 10% increase or decrease respectively. 10%
disturbance in steam temperature does not result in any
noticeable change in the product concentration of both the
effects. However after scaling down Y-axis value, it was
observed that product concentration increase and then
decrease or decrease and then increase for 10% increase or
decrease in the steam temperature respectively,

Vatiation in the Temperature of 6th eflect with 10% decraase in steam temperalure
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Figure 8. Response of Ist effect by
disturbing + 10% in the steam temperature
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D. Effectofvarying feed temperature

Since feed liquor enters in the last effect, thus for the
dynamic response of the feed temperature the disturbance
is applied in the last effect. The effect of =10% step change
in feed temperature on the temperature and concentration
of last and the first effect are shown in the Fig. 9 to Fig. 10
respectively. It is evident from the figures that 10%
disturbance in feed temperature does not bring noticeable
change in the temperature and product concentration each
effect. However after scale down Y-axis, it is observed
that temperature of the both the effect increases and
decreases to obtain the steady-state with an increase and
decrease in feed temperature and the product
concentration of each effect first decreases and then
increases to obtain the steady state with a very small
fluctuations about the steady-state up to four to five
decimal places in the value of concentrations of both the
effect and conversely for 10% increase in feed
temperature.
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Vaiation in the Concentration of 1st effect with 10% decrease in feed tamperature
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Figure 10. Response of 1st effect by disturbing
+ 10% in the feed temperature

V1. CONCLUSION

Dynamic modeling is an useful tool in the determination
of process variables in transient conditions. For
designing an effective and efficient control system. it 1s
always desirable to have a thorough knowledge of the
system behavior in different conditions as well as
detailed knowledge of variation in the process variables
under transient condition. There is always a desire in the
process industry for casicr to use and more affordable
advanced control technologies and products. Dynamic
model helps us in better understanding of the process and
behavior of its variables, thereby helps in determining a
better control system. Thus in the present investigation,
an unsteady-state lumped parameter models were
developed for sextuple effect falling film evaporator for
backward feed sequence for concentrating the black
liquor by using material, energy balance equations and
parametric correlations. For the steady state and dynamic
simulation, the *fsolve’ and “ode45" solvers.in MATLARB
source code is used. The model is validated for the steady
state solution using literature data. The dynamic
behavior of each effect’s temperature and product
concentration was studied by disturbing the liquor flow
rate, feed concentration, steam and feed temperatures by
+10%. The transient study shows that the steady state is

reached more quickly for temperature in comparison of

the solid concentration and all of the responses converge
in a smooth fashion.

NOMENCLATURE

A | Shell area. m? U | Overall Heat Transfer
Coefficient (OHTC).
kJsec.m?°C

BPR | Boiling point rise. | W | Mass flow rate. kg's

X
C | Constant X | Solid content, %o

Cp | Spectfic heat of | A
water al  constant ‘

Latent heat of vaporization

pressure, kI'kg |

h Enthalpy. kJ'kg °C Subscripts

L | Liguor level. m C | Condensate

M | Mass. kg L | Liquor

Pl | Liquor density [ | Effect number

t | Time. scc V| Vapor

T | Temperature. C | |
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