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Abstract— In this era of modernization, deregulation and
competition the scenario of the optimization techniques is being
evolved dramatically towards the functional mimicry of nature.
There are many nature inspired optimization algorithms such as
PSO, Ant Colony, Genetic Algorithm, Evolutionary Techniques
etc. Recently Bacterial foraging Optimization Algorithm has
attracted a lot of attention as a high performance optimizer. In
2002, K. M. Passino proposed Bacterial Foraging Optimization
Algorithm (BFOA)[1] for distributed optimization and control.
One of the major driving forces of BFOA is the chemotactic
movement of a virtual bacterium that models a trial solution of
the optimization problem. The underlying biology behind the
foraging strategy of E.coli is emulated in an extraordinary
manner and used as a simple optimization algorithm. This paper
presents the BFOA for global optimization.
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[. INTRODUCTION

Optimization 1s a computational science that studies
techniques for searching the ‘best’ solutions. It has been
widely employed in a large variety of fields, including
transportation, manufacturing, physics, and medicine. To
tackle complex search problems of the real world, scientists
have been drawing inspiration from nature and natural
creatures for years. Optimization is at the heart of many
natural processes like Darwinian evolution, group behavior of
social insects, and the foraging strategy of other microbial
creatures. Natural selection tends to eliminate species with
poor foraging strategies and favor the propagation of genes of
species with successful foraging behavior since they are more
likely to enjoy reproductive success.

Since a foraging organism or animal takes necessary action

to maximize the energy intake per unit time spent for foraging,

considering all the constraints presented by its own
physiology such as sensing and cognitive  capabilities,
environment (e.g.. density of prey, risks from predators,
physical characteristics of the search space), the natural
foraging strategy can lead to optimization and essentially this
idea can be applied to solve real-world optimization problems.
Based on this concept, Passino proposed an optimization
technique known as the bacterial foraging optimization
algorithm (BFOA) [1]. To date, BFOA has successfully been
applied to real-world problems such as optimal controller
design, harmonic estimation, transmission loss reduction,
active power filter synthesis, and learning of artificial neural
networks.

II. THE BACTERIA FORAGING OPTIMIZATION ALGORITHM

In the process of foraging, E. coli bacteria undergo four
stages, namely, chemotaxis, swarming, reproduction, and
elimination and dispersal. In search space, BFOA seek
optimum value through the chemotaxis of bacteria, and realize
quorum sensing via assemble function between bacterial, and
satisfy the evolution rule of the survival of the fittest make use
of reproduction operation, and use elimination-dispersal
mechanism to avoiding falling into premature convergence.

A. Chemotaxis

This process simulates the movement of an E.coli cell
through swimming and tumbling via flagella. Biologically, an
E.coli bacterium can move in two different ways. It can swim
for a period of time in the same direction, or it may tumble,
and alternate between these two modes of operation for the
entire lifetime. Suppose 0i(j, k, 1) represents i th bacterium at
th chemotactic, k" reproductive and 1™ elimination dispersal
step. C(1 ) is the size of the step taken in the random direction
specified by the tumble (run length unit). Then in
computational chemotaxis the movement of the bacterium
may be represented by
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where A indicates a vector in the random direction whose
elements lie in [-1, 1].

B. Swarming

An interesting group behavior has been observed for
several motile species of bacteria including E.coli and S.
typhimurium. When a group of E. coli cells is placed in the
center of a semisolid agar with a single nutrient chemo-
effector, they move out from the center in a traveling ring of
cells by moving up the nutrient gradient created by
consumption of the nutrient by the group. To achieve this,
function to model the cell-to-cell signaling via an attractant
and a repellan. The mathematical representation for E.coli
swarming [2] can be represented by:

S (0.P(j.k.D)=Y T (6,6 (j.k.I))
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where is the cost function value to be added to the actual
cost function. S is the total number of bacteria and p is the
number of parameters to be optimized which are present in

each bacterium. 979 ig the depth of the attractant released

w 3 §

by the cell and 9% ijs a measure of the width of the
h, i :

attractant signal, "Pe/an = “atract ig the height of the repellant

w, ‘ .
effectand ~ "“™" is a measure of the width of the repellant.

C. Reproduction

According to the rules of evolution, individual will
reproduce themselves in appropriate conditions in a certain
way. For bacterial, a reproduction step takes place after all
chemotactic steps.

N_+1
Joun = 3, I, ok, 1)
j=l

Where J,

health
chemotactic parameters C(i) in order of ascending cost (higher
cost means lower health). For keep a constant population size,

is the health of bacterium i. Sort bacteria and

bacteria with the highest J values die. The remaining

health
bacteria are allowed to split into two bacteria in the same
place.

D. Elimination-Dispersal

In the evolutionary process, elimination and dispersal
events can occur such that bacteria in a region are killed or a
group is dispersed into a new part of the environment due to
some influence. They have the effect of possibly destroying

chemotactic progress, but they also have the effect of assisting
in chemotaxis, since dispersal may place bacteria near good

food sources. From the evolutionary point of view,
elimination and dispersal was used to guarantees diversity of
individuals and to strengthen the ability of global optimization.
In BFOA, bacteria are eliminated with a probability of ped.In
order to keeping the number of bacteria in the population
constant, if a bacterium is eliminated, simply disperse one to a
random location on the optimization domain.

[1I. THE BFOA ALGORITHM
[Step 11 Initialization
i.  Number of parameters (p) to be optimized.

il Number of bacteria (S) to be used for searching the
total region.

. Swimming length N; after which tumbling of bacteria
will be undertaken in a chemotactic loop.

iv. N, the number of iterations to be undertaken in a

chemotactic loop. (N.>N,).
V. N,. the maximum number of reproduction to be
undertaken.
vi. N.4 the maximum number of elimination and
dispersal events to be imposed over bacteria.
vil. P4 the probability with which the elimination and
dispersal events to be imposed over bacteria.

viil. The location of each bacterium P(1-p, 1-s, 1) which
is specified be random numbers on [-1, 1].
1X. The value of C(i) which is assumed to be constant.

x. The values of d w h

attract attract repell
epellant 404

wlrepu.'fanr
[Step 2] Iterative algorithm for optimization
This section models the bacteria population chemotaxis,
swarming, reproduction, elimination and dispersal.
Elimination-dispersal loop: /=/+1.
Reproduction loop: k=k+1.
Chemotaxis loop: j=j+1.
a) For i=1, 2, ..., S, calculate cost function value for each
bacterium / as follows.
= Compute value of cost function J(/, j, k, ). Let Jo,( i,

ik =Gk J (6(,k1),P(j.k1D))
(i.e., add on cell-to-cell attractant effect for swarming
behaviour).
= Let Juu= Jufi, j, k 1) to save this value since we
may find a better cost via a run.
=  End for stop loop.

b) Fori=l1,2, ....., S take the tumbling/swimming decision
e Tumble: Generate a random vector A(i)€ R’ with
each element A (i) m= 1, 2, ...p, a random

number on [-1, 1].
e  Move: let

G (j+1L,k1)=6'(j,k,DH+C(i) al)

JAT (HAG)
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Fixed step size in the direction of tumble for bacterium i is
considered.

e Compute J(i, j+1,k,/) and then let Joo( i, j, k I
= Xj k D+ J_(8'G kD), ULk, 1))

e  Swim:
I.Let m=0; (counter for swim length)
[1.While m<N; (have not climbed down too long)
e Letm=m+l
o IfJ (i j+1, k 1)<J (if doing better), let J,,,, =J..(i,
Jj+1, k, 1) and let

o
( Stan )
\‘_/ =
(a)
Intializationof \;’/
e Compute value of
¥ cost function for each
Elrmunation and bactenum as J(1.P)
Daspersal Loop where [ 1s the
counter. L=1 bactenum number
}\ Yes ~— )\
L> _\',,>—q Sp )
. T upar)
L . I=I-1
Reproduction le o
loop counter, K=1 “Y
Swim, N=N=+]
| SW(I=N

-

—~ Chemotactic A‘:l?@-‘s
( B} loop counter, \//
p —

P=1 i /i\

Fig. 2(a) Flow chart of Bacterial Foraging Algorithm
Nutrient concentration (valleys=food, peaks=noxious)

Fig.2(b) Contour of the test Function

A(i)

VAT (DA(®)
and use this @' ( j +1,k,/) to compute the new
J(i, j+1L,k,T)

e Else, let m=Ns. This is the end of the while statement.

¢) Go to the next bacterium (i+1) if i # S (i.e. go to b)
to process the next bacterium.

6'(j+1,k,1)=6(j,k,1)+C(@)

If j<N_, gotostep 3. In this case, continue chemotaxis
since the life of the bacteria s not over.

Reproduction

a) For the given k and /, and for each i=1, 2, ....S, let

J,imnh - ’El’ll‘llle A/, (G, .k, 1)} be the health of the

bacterium i (a measure of how many nutrients got
over its life time and how successful it was at
avoiding noxious substance). Sort bacteria in order of
ascending cost J, . (higher cost means lower
health).

b) The S,=S/2 bacteria with the highest J

die and other S; bacteria with the best value split (and
the copies that are made are placed at the same
location as their parent)

health values

If k<N, goto2, in this case we have not reached the

number of specified reproduction steps, so we start the
next generation in the chemotactic loop.
Elimination-dispersal : For i=1, 2, ..S, with probability P,
eliminate and disperse each bacterium(this keeps the
number of bacteria in the population constant) to a
random location on the optimization domain.

Flow Chart of the above algorithm is shown in Fig. 2(a)

IV. SIMULATION AND RESULTS

The algorithm described above is simulated for the test
function :

J = S*exp(-0.1*((theta(1,1)-15)"2+(theta(2.1)-20)"2))-
8*exp(-0.08*((theta(1,1)-20)"2+(theta(2,1)-15)"2)) in
MATLAB 7.9.0. The following results are obtained when
S=50, p=2, Nc=100, Ns=4, Nre=4, Sr=S/2, Ned=2, Ped=0.25.

Figure 2 shows the contour of the function where valleys
are food and peaks are noxious. Figure 3 shows the bacteria
movement towards the global optimization. Figure 4 shows
the nutrients obtained by bacteria during life. Figure 5 shows
the health of the bacteria i.e. Jhealth . Figure 6 shows the
location of the bacteria P(1-p,1-s,1).

V. CONCLUSION
Bacterial Foraging Algorithm can be effectively used to solve
optimization problems. The effectiveness of the BFOA is
verified through simulation results on a test function and #
provides a scope for more future work on this technique.
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