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Abstract - Electrocardiogram (ECG) signal has been
widely used in cardiac pathology to detect heart disease. The
ongoing trend of ECG monitoring techniques to become
more ambulatory and less obtrusive generally comes at the
expense of decreased signal quality. To enhance this quality,
consecutive ECG complexes can be averaged triggered on
the heartbeat, exploiting the quasi-periodicity of the ECG.
However, this averaging constitutes a trade-off between
improvement of the SNR and loss of clinically relevant
physiological signal dynamics. Recent work has attempted
to utilize wavelet techniques in the analysis of biomedical
signals including ECG. In this paper Multi- Resolution
Analysis property of wavelet transform is used to enhance
ECG signal quality by denoising the signal using Daubechies
6 Wavelet as best suited mother wavelet at level 4.

Keywords: Electrocardiogram (ECG), Adaptive Wavelet
Transform (AWT), Multi- Resolution Analysis (MRA),
Signal to Noise Ratio (SNR), Daubechies 6 (db 6).

[. INTRODUCTION

In ECG, during every heartbeat, P, Q, R, S, T, and U
waves can be seen. These waveforms result from
depolarization and repolarization of different parts of the
heart muscle. The performance of ECG analyzing system
depends mainly on the accurate and reliable detection of
the QRS complex, as well as T and P waves. The P-wave
represents the activation of the upper chambers of the
heart, the atria, while the QRS complex and T-wave
represent the excitation of the ventricles or the lower
chamber of the heart. The detection of the QRS complex is
the most important task in automatic ECG signal analysis.
Once the QRS complex has been identified a more
detailed examination of ECG signal including the heart
rate, the ST segment etc. can be performed. In the normal
sinus rhythm (normal state of the heart) the P-R interval is
in the range of 0.12 to 0.2 seconds. The QRS interval is
from 0.04 to 0.12 seconds. Normally, the frequency range
of an ECG signal is of 0.05-100 Hz and its dynamic range
of I-10mV.

The Q-T interval is less than 0.42 seconds and the
normal rate of the heart is from 60 to 100 beats per minute.

So, from the recorded shape of the ECG, we can say
whether the heart activity is normal or abnormal. The
electrocardiogram is a graphic recording or display of the
time variant voltages produced by the myocardium during
the cardiac cycle. The P, QRS and T-waves reflect the
rhythmic electrical depolarization and repolarization of
the myocardium associated with the contractions of the
atria and ventricles. This ECG is used clinically in
diagnosing various abnormalities and conditions
associated with the heart. The normal value of heart beat
lies in the range of 60 to 100 beats/minute. A slower rate
than this is called bradycardia (slow heart rate) and a
higher rate is called tachycardia (fast heart rate). If the
cycles are not evenly spaced, an arrhythmia may be
indicated. If the P-R interval is greater than 0.2 seconds, it
may suggest blockage of the AV node. The horizontal
segment of this waveform preceding the P-wave is
designated as the baseline or the isopotential line. The P-
wave represents depolarization of the atrial musculature.
The QRS complex is the combined result of the
repolarization of the atria and depolarization of the
ventricles, which occur almost simultaneously. The T-
wave is the wave of ventricular repolarization, where as
the U-wave, if present is generally believed to be the result
of after potentials in the ventricular muscle. So, the
duration amplitude and morphology of the QRS complex
is useful in diagnosing cardiac arrhythmias, conduction
abnormalities, ventricular hypertrophy, myocardial
infection and other disease states.

Monitoring and analysis of the ECG has long been
used in clinical practice. In recent years, the application
field of ECG monitoring is expanding to areas outside the
clinic. An example of such an area is at-home monitoring
of patients with sleep apnea [1]. Also within the clinic, a
transition in ECG monitoring applications is taking place.
With developments in sensor technology (e.g.. textile
electrodes and capacitive electrodes), sensors that are
incorporated in garments or the mattress of an incubator
[2] have become available. As a result of these new sensor
technologies, the comfort of the patient is improving
progressively. Whereas some years ago the patient had to

NIET Journal of Engineering and Technology, Vol. 3, Issue 2, 2012




reconcile himself or herself with the discomforts of the
only available technology, nowadays patients prefer the
more comfortable ways of recording the ECG. However,
in most cases, this increased comfort comes at the expense
of signal quality. Electrodes that are incorporated in
garments generally provide signals with a lower SNR and
more artifacts than contact electrodes that are glued to the
body [3]. Another example of ECG signals with a
typically low SNR is fetal ECG signals, either recorded
invasively after membrane rupture or noninvasively from
the maternal abdomen [5]. Some of the SNR and artifact
problems that arise during these recordings can be
suppressed by simple, frequency-selective filtering
[5]-[7]. However, due to the partial overlap of signal and
noise bandwidths [8], [9], this frequency-selective
filtering can only help to some extent. Further
improvement of the ECG can be achieved by exploiting
its (quasi-)periodicity. Consecutive ECG complexes
resemble one another and are, moreover, in general
uncorrelated with noise and artifacts. Hence, by
averaging several consecutive ECG complexes, the SNR
can be improved. For additive Gaussian noise, this
improvement is directly related to the number of ECG
complexes included in the average [10]. The drawback of
averaging multiple consecutive ECG complexes is that,
besides noise, also the physiological dynamics of the
ECG are suppressed. That is, changes in the ECG that
originate from physiological events for instance, changes
in the ST segment that might be associated to metabolic
acidosis are suppressed in the averaging, complicating
clinical diagnosis. From this, it is clear that the averaging
of ECG complexes entails a trade off between the pursued
increase in SNR and the time scale at which
physiologically relevant changes in ECG morphology are
expected to oceur.

Wavelet transform (WT) is a very promising
technique for time frequency analysis. By decomposing
signals into elementary building blocks that are well
localized both in time and frequency, the WT can
characterize the local regularity of signals [4]. This
feature can be used to distinguish ECG waves from
serious noise, artifacts and baseline drift. Using
aBayesian framework a sequential averaging filter is
developed that, in essence, adaptively varies the number
of complexes included in the averaging based on the
characteristics of the ECG signal. The filter has the form
of an adaptive Kalman filter. The adaptive estimation of
the process and measurement noise co-variances is
performed by maximizing the Bayesian evidence
function of the sequential ECG estimation and by
exploiting the spatial correlation between several
simultaneously recorded ECG signals, respectively [13].
In this paper, we have used Multi Resolution Analysis

(MRA) technique of WT to denoise ECG signal and
enhance signal quality by increasing SNR.

II. WAVELET TRANSFORM
A. Continuous Wavelet Transform (CWT)

Let x(¢) be a signal defined in L’(R) space, which
denotes a vector space for finite energy signals. R is a real
continuous number system. Such signals satisfy:

f|x(t)|2dtSO

The Wavelet Transform or Continuous Wavelet
Transform (CWT) of a continuous time domain signal x(¢)
is given by X(a,7) which is defined as :

Forward CWT:
E =1
X(ax)= jx(z)l—w ( ]dr N
Inverse CWT:
x(f)== H X(a ) TW ( )da dt (2)

The analyzing wavelet '¥(t) term can be written as -

1 -1
|a|”2 v p (3)

W, (0=

Vi) =0

Notice that

Then above equations can be written as:
Forward CWT:

oo

X(a)= [ X(0)y,, *(¢)di @)

—c0

Inverse CWT:

=1 ]

r_.,-oaa —o0

1 .
X(a,t). =y, (t)dadt )
a

Wherea,t€R and a# 0and 'c'is aconstant(0 < ¢

< o) that depends on the wavelet used. The success of the
called
to satisfy the following

reconstruction depends on this constant
admissibility constant,
admissibility condition
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Where W(w) 1s the Fourier transform and W*(¢) is the
complex conjugate of the mother wavelet (7). x(7) the
signal to be transformed, a and 1 the dilations (scaling)
and translations (time-shift) parameters, respectively.
With a suitable choice of the mother wavelet, the scale
parameter is proportional to the reciprocal of frequency:
the translation parameter stands for time [12].

A. Discrete Wavelet Transform (DWT)

The corresponding discrete wavelet transform (DWT)
of a time domain signal x(f) is given by X{(j, k) which is
defined as

o0 s J
X (k)= [ x(@). ',-,.,2‘41'([ "'T‘ja“ ]dt (6)
a(l

e

The analyzing wavelet W(r) term can be written as

R r
l OI 4

Then the expression of Eq. (6) can be written as:

v, (0)=

(7)

400

X (j, k)= j x(0). =5V, 4 (0)dt ®)

Iol

We can define the DWT of a signal x(t) to be
the set of analysis coefficients:

Analysis: ¢, ; = jx(t)\p'j‘k (t)dt 9

From these we can recover the signal as:

Synthesis: X(1)= Y > ¢, W, (1) (10)
ik

Assuming existence of a scaling function, ¢(f) we can
modify this definition as follows:

Since the spaces are getting larger®and larger as j goes to
+o0 We can approximate any signal x(¢f) closely by
choosing a large enough value of j = J and projecting the
signal into ¥, using the basis

cAy(m) = [ x(0)9,,,(t)dt (in

—0

From these we can approximately recover the signal as:

x(0)= Y cdy (mp, (1) (12

In effect, we replace the signal x(t) by the approximate
signal given by the projection coefficients, cAO(m). Fron
Eq.(10),(11)and (12), we can write

x(t) =Y cd,(m) 9, (1)
= D cAK)9,1,(K)+ X cD (k)1 (1)
k k

As before, we call the signals A (t) and D,(t) the
approximation and the detail at level-1. We call the
coefficients cA (k) and c¢D (k) the approximation-
coefficients and the detail-coefficient at level-1.

We can further decompose A (t) to get:

x(t)=A, (tr+D;(t)
=D Ay ()b, () + Y Dy (k)W (1)
k k

+2eD (L, (0)
k
=A; ()+ D2 ()+ D, (1) (14)

We call the signals A,(t) and D,(t) the approximation
and the detail at level-2. We call the coefficients cA, (k) and
cD,(k) the approximation-coefficients and the detail-
coefficients at level-2 [12].

C. Multi-resolution Analysis

Define W, to be set of all signals x(t), which can be
synthesized from the daughter wavelets y (1),

x(1) = i x,(t) (15)

where X ()= i ;N (D

oo
This leads to various decompositions:

x(t)= A1)+ D(t)

=A4,(6)+D,(1) + D\ (1)
= 4, (1)+ Dy(0)+ Dy(1)+ Dy (2)
=AM+ D,()+ D)+ D,(t)+D, (1)

where D(t), in W, is called the detail at level i and A (t), is
called the approximation at level 1.

The approximate coefficients can be computed as

below: . 4 (k)= (x(f),¢,4.k (r)>
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=<Z CA0(11)¢1_"(I)~¢J4j(t)>
=Y e (m)(0,,(0.0,.,,®)

(16)

To complete this calculation we have to compute the inner
product:

(0,,00.0,4(0)= [N20@'t-n W2 02 ket
= [V20 @/ t-m0(2" 1~ Ky

(substitute - 2t k)

= T V2 025+ 2k —n)d(s)ds

(Use the 2-scale equation for O(s))

_ T \/5(9(25 +2k— n)z h‘,(m)ﬁd)(Zs —m)ds

= hy(m) j O(2s5+ 2k —n)o (25 —m)2ds
(integral is 0 :riless m=n-2k)

~hy(n-2k)

The detail coefficients can be computed similarly [12] as
eDy (k) = (x (1) ,-,4()

= <Z cAy(mib, (DN, (t)>
=Y, cAm(o,, 0w, ®)

The Equations (16) and (17) are used for decomposing the
signal into approximation and detailed coefficients.

(17)

11 DATA ACQUISITION AND DEMARCATION OF
INDIVIDUAL ECG COMPLEXES
To evaluate the used technique AWT, a diversity of
arrhythmic ECG signals is used. The signals are obtained

from the Massachusetts Institute of Technology-Beth
Israel Hospital [11]. To map the AWT's performance as a
function of the SNR of the recorded signals as well, the
ECG signals are corrupted with additive Gaussian noise of
various amplitudes, yielding ECG signals with SNRs
ranging from —3 to 24 dB. The TWA signals comprise a
rather ideal dataset for evaluating the performance of the
AWT. They exhibit relatively high SNR values that can be
made smaller by additive Gaussian noise, and that
moreover facilitate quantitative assessment of the
processed ECG signals. Before defining the individual
ECG complexes, the QRS complexes need to be detected.
To facilitate this detection, the SNR of the ECG signals is a
priori enhanced by linearly combing the signals in such a
way as to maximize the variance. The linear combination
with maximum variance is referred to as the principal
component. The QRS complexes are subsequently
detected in the principal component as local extrema that
exceed an adaptive threshold. This adaptive threshold is
updated continuously by means of an AWT and depends
on the SNR of the ECG signals complexes in the principal
component, when the SNR changes, the threshold is
adapted to prevent noise from exceeding it, in the mean
time ensuring that the QRS complexes still exceed the
threshold.

IV. RESULTS AND DISCUSSIONS

Noisy signal is shown in figure (1) which is analysed
with Daubechies 6 Wavelet as best suited mother wavelet
at level 4 with the help of Wavelet tool of MATLAB
R2012a. Figure 2 shows approximation signal having
lower frequency and figure (3) to figure (6) depicts
detailed signal d,. d,, d., and d, which contains higher
frequency component of the signal. From the waveform
shown in figure 3 it is clear that detailed coefficient d1 is
having higher frequency than that of d,, detailed
coefficient d, is having higher frequency than that of d, and
detailed coefficient d, is having higher frequency than that
of d,. Signal is denoised with Wavelet transform and
denoised signal is plotted which is shown in figure 7. For
analysis many mother wavelet like Haar, Coiflet, Symlet,
Morlet, Mexican Hat, Daubechies 2, Daubechies 4,
Daubechies 6 and Daubechies 8 have been tried but
Daubechies 6 (db- 6) provides high SNR.

1_ ' [ |
0.5

-0.5

| o

St | | |

> N‘WM 'l,"“‘w\‘( |.Mi er ’||
[ 1 l ! |

N
‘;M,M'.W

1

Figure |

NIET Journal of Engineering and Technology, Vol. 3, Issue 2, 2012

43



0 S T 7 | q— T 7 T T T ;
0sf | I I | I [ "l (-
a4 oM H'?."‘/ M/ \‘w.lh'\/ “‘v-vﬂf‘ﬁi WYAYW \J'.llhr'/\ Nt ll‘““ull.v“f “"f.“”",,“ b\ \'\’;i' pw\w\/'ﬂ"yl'w”'w
- f |' | ! | i
-0.5 ‘ [ ’ 1 | g | ; ‘l i | I | { ' 1 -
Figure 2
02F T = T T T T T T
0.1 A
d, Lokl b
Pl Ly R U R S
0.1+ -
L l 1 I I 1 L [ ai
Figure 3

-0.2 I | ! il I ! !
500 1000 1500 2000 2500 3000 3500
Figure 6

Originmal and de-noised sigrmnals

:1 OO OoO =2000 =200 0 3O OO

Figure 7

V. CONCLUSIONS

An approach to study ECG signal based on adaptive ECG signal noise reduction and signal enhancement.
wavelet transform is investigated in this paper. Computer ~ More tests will be conducted to investigate further its
simulation results show this approach is promising for ~ performance in the future.
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