Analysis and Design of Metrics for
Autonomic Computing

Deepak Kumar Tyagi ', Anuraag Awasthi”, Ritesh Rastogi”
*Dept. of Computer Applications, Noida Institute of Engg. & Tech. (NIET), Greater Noida,UF, India,

eit.deepak@gmail.com,

anuraag_awasthi@hotmail.com,

rit ras@hotmail.com

Abstract--Today the computer software/systems have
become extremely complex. The increased need to distribute
data, applications and system resources across geographical
boundaries has led to complexity of the software
applications. This situation results in overall increase in
maintenance efforts and cost. There is a need to have systems
which are self-aware, self-protecting, self-healing, self-
optimizing, and self- configuring. This would help in
cheaper and faster maintenance. Such computing systems
and infrastructure would take care of managing themselves.
In an autonomic environment the IT infrastructure and its
components are self-managing leading to reduced cost of
owning and operating computer systems. The present paper
does a study of existing quality characteristics and
corresponding metrics, and based on analysis proposes a
new set of characteristics as well as metrics to design a robust
autonomic computing system.

Keywords—Autonomic computing, self-aware, self-
protecting, self-healing, self-optimizing. and self-
configuring.

I INTRODUCTION

The current method of dealing with the increased level
of the software application complexity is proportionally
increasing the number of persons involved in
maintenance. However this manual method is
unsustainable at best as the exponential growth of the
software industry makes it prohibitively time consuming,
expensive and error prone to match the number of
maintainers with the complexity of the software systems.
The possible solution could be to incorporate self-
management in the applications without human
interactions. This means letting computing systems and
infrastructure take care of managing themse]ves. In an
autonomic environment the IT infrastructure and its
components are self-managing. Systems with self-
managing components reduce the cost of owning and
operating computer systems. Autonomic computing
capabilities simply make applications that can take care of
themselves. Applications would automatically diagnose
their own problems and fix them, reasoning out how to
protect them from future bugs. The applications would
become self-aware, self-protecting, self-healing, self-
optimizing, and self- configuring.

Autonomic systems make informed, constrained
decisions without human intervention. They enable
dynamic self-management, self-protection and self-
optimization of software systems, in turn allowing
software systems to react to the changing requirements
of their environment. Within the last 20 years the number
of computer devices have increased at an unparalleled
rate; as has the complexity of both the software and
communications infrastructure that supports these
devices [1]. An autonomic system provides these facilities
for a large-scale complex heterogeneous system. It is a
system that manages itself. This definition shows that
Autonomic System is emerging as an approach to the
design, development, and management of large-scale
distributed computing systems.

Salehie et.al [5] proposes a category of complexity in
IT Systems. According to them, there are two visions of
Autonomic Computing. The first is “Vision in
Administration” and second is “Vision in Software
Engineering”. Nami et.al [9] presented thorough survey
of autonomic computing systems, presenting their
characteristics, effects on quality factors, their building
block architecture and challenges. King etal [11]
presented a reusable object-oriented design for
developing self-testable autonomic software. Arnautovic
etal [8] proposed a model software management
interactions and tasks in the form of a discourse between
the administrator and the software system.

Il AUTONOMIC COMPUTING SYSTEMS (ACS)

An Autonomic Computing System (ACS) provides
above facilities for a large-scale complex heterogeneous
system. An ACS is a system that manages itself. This
definition shows that ACS is emerging as an approach to
the design, development, and management of large-scale
distributed computing systems. According to Paul Horn’s
definition [4], an ACS is a self-managing system with
eight elements. Self-configuration means that an ACS
must dynamically configure and reconfigure itself under
changing conditions. Self-healing means that an ACS
must detect failed components and eliminate or replace it
with another component without disrupting the system.

NIET Journal of Engineering and Technology, Vol. 4, Issue 1, 2013

59

On the other hand, it must predict problems and prevent
failures. Self-optimization is the capability of
maximizing resource allocation and utilization for
satisfying user requests. Resource utilization and work
load management are two significant issues in self-
optimization [5]. An ACS must identify and detect attacks
and cover all aspects of system security at different levels
such as the platform, operating system, applications, etc.
[t must also predict problems based on sensor reports and
attempt to avoid them. Itis called self-protection.

An ACS needs to know itself. It must be aware of its
components, current status, and available resources. It
must also know which resources can be borrowed or lent
by it and which resources can be shared. It is self-
awareness property. An ACS must be also aware of the
execution environment to react to environmental changes
such as new policies. It is called context-awareness or
environment-awareness. Openness means that an ACS
must operate in a heterogeneous environment and must be
portable across multiple platforms.

Finally, an ACS can anticipate its optimal required
resources while hiding its complexity from the enduser
view and attempts to satisfy user requests. We consider
self-configuration, self-healing, selfoptimization,
and self-protection as major characteristics and the rest as
minor characteristics.[2] defines decentralized autonomic
computing systems as systems that are constructed as a
group of locally interacting autonomous entities that
cooperate in order to adaptively maintain the desired
system-wide self-* properties without any external or
internal control. For these systems, implications and
interpretation of decentralization on self-* properties
can be grand challenges [6][7].

® Self-Management: The Autonomic Computing
system must free system administrators from the
details of system operation and maintenance.

® Self-configuration: An autonomic computing
system configures itself according to high-level
goals, i.e. by specifying what is desired, not
necessarily how to accomplish it. This can mean
being able to install itself based on the needs of a
given platform and the user.

® Self-optimization: An autonomic copputing system
optimiZes its use of resources. It may decide to
initiate a change to the system proactively (as
opposed to reactive behavior) in an attempt to
improve performance.

® Self-healing: An autonomic computing system
detects and diagnoses problems. What kinds of
problems are detected can be interpreted broadly:
they can be as low level as a bit-error in a memory
chip (hardware failure) or as high-level as an
erroneous entry in a directory service (software

problem). Fault- tolerance is an important aspect of
self-healing. Typically, an autonomic system is said
to be reactive to failures or early signs of a possible
failure.

® Self-protection: An autonomic system protects itself
from malicious attacks but also from endusers who
inadvertently make software changes, e.g. by
deleting an important file. The system autonomously
tunes itself to achieve security, privacy and data
protection. Thus, security is an important aspect of
self-protection, not just in software, but also in
hardware.

® Openness: The Autonomic Computing system must
function in a heterogeneous world and implement
open standards.

e Context-awareness: The Autonomic Computing
system must find and generate rules for how best to
interact with neighboring systems.

e Anticipatory: The Autonomic Computing system
must have a projection of the user needs and actions
into the future.

TABLE 1
AUTONOMIC COMPUTING VS CURRENT COMPUTING

Concept Current Computing | Autonomic Computing

Automated
configuration of

Self- Corporate data
configuration | centers have multiple
vendors and
platforms. Installing,
configuring, and
integrating systems
is time-consuming
and error prone.

components and
systems follow high-
level policies. Rest of
system adjusts
automatically and
seamlessly.

Systems have
hundreds of
manually set
nonlinear tuning

Components and
systems

Self-
optimization

continually seek

parameters, and their
number increases
with each release.

opportunities to improve
their own performance
and efficiency.

Self-healing

Problem
determination in
large, complex
systems can take a
team of
programmers weeks.

System automatically
detects, diagnoses, and
repairs localized
software and hardware
problems.

Self-
protections

Detection of and
recovery from
attacks and
cascading failures is
manual.

System automatically
defends against
malicious attacks or
cascading failures. It
uses early warning to
anticipate and prevent
system wide failures.

Table 1 compares the four states of autonomic computing
with how we manage today and what it will be like with
full autonomic systems.

NIET Journal of Engineering and Technology, Vol. 4, Issue 1, 2013

® Self-Awareness: The Autonomic Computing system the existing ones like self-optimizing, and self-protecting
must be aware of its internal state. An ACS needs to etc. For these additional characteristics, new metrics have
know itself. It must be aware of its components, been proposed as well some have been reclassified to
current status, and available resources. It must make them more realistic and logical. These metrics such
also know which resources can be borrowed or as maintainability, understandability, reusability,

landed by itand which resources can be shared. usability, adaptability and modularity can be used to
® Self-Regulation: The capability of adapting determine external characteristics.
automatically and dynamically to environmental The proposed dynamic metrics will work as indicators

changes. Thls.charactenstlc hgs B0 'aspects.as in predicting Autonomic Software Systems’ external
follows: Installing, (re)-configuring, and integrating otz T

s . quality characteristics.
large Adaptability in architecture or component
level to re-configure the system.

® FEnvironment Awareness: The Autonomic
Computing system must find and generate rules for
how best to interact with neighboring systems.

® Self-Adaptive: An autonomic computing system
must know its environment and the context
surrounding its activity, and act accordingly. It will
find and generate rules for how best to interact with
neighboring systems. Itwill tap available resources,
even negotiate the use by other systems of its
underutilized elements, changing both itself and its
environment in the process, inaword, adapting.

Self-Managing

f i

D IT MY
Bupq

UOBSAIINT JOS

® Self-Defining: The Autonomic Computing system - ,
must free system administrators from the details of g 3 | £ g | 3
system operation and maintenance. : 3 z g |
: | |

® Self-Expression: Concerns the possibility of
radically modifying at run-time the structure of . -

Z Fig. 2 Relationships between New-Autonomic
components and ensembles. For components, this Chamcastistics 368 Quality FiSrs
could imply internalizing capabilities previously
unavailable to them (e.g., a new function or new
sensors) as well as changing their internal REFERENCES

architecture (e.g.. switching from being reactive [1] Naganathan E. R. and Eugene X. P. 2009. Architecting
entities to goal-oriented ones). Autonomic Computing Systems through Probabilistic Software
Stability Model (PSSM). In Proceedings of the 2nd International

TABLE I11
L ; Conference on Interaction Sciences: Information Technology,
RELATIONSHIP BETWEEN NEW AUTONOMIC Culture and Human (1CIS '09). ACM, New York, NY, USA. pp:
CHARACTERISTICS AND QUALITY FACTORS 643-648
Characteristics Metrics [2] AbbasN., Andersson J., and Lowe W. 2010. Autonomic Software
Self-Awareness Functionality Product Lines (ASPL).In Proceedings of the Fourth European
- AT = = Conference on Software Architecture: Companion Volume
Self~Regulanon Rellablhty. hfﬁcnency and (ECSA'10), Carlos E. Cuesta (Ed.). ACM, New York. NY, USA.
Maintainability pp:324-331.
Environment Awareness Usability, Efficiency [3] Sharma, A., Kumar, R., Grover, P. S. 2009, “Reusability
PRI o e Assessment for Software Components - a Neural Network Based
Self-Adaptive thdpllltyl‘, Portability and Approach”, Accepted for publication in International IEEE
Functionality . Conference (IACT 09) to be held at Thapar University, Patiala
Self-Defining | Functionality and from 26-28 March.
Portability [4] Bradley Simmons and Hanan Lutfiyya. 2005. Policies, Grids
Self-Expression Efficiency and Reliability stid - Antétiomic Congating, In Procéedings of the Rovishop
. on Design and Evolution of Autonomic Application Software

(DEAS'05). ACM, New York. NY, USA, pp:1-5.

[5] Salehie M. and Tahvildari L., 2005. Autonomic computing:

IV CONCLUSION
emerging trends and open problems. SIGSOFT Software

An Autonomic Computing System to be truly self- Engineering. Notes 30,4 (May 2005),pp:1-7
managing, it is required that it possesses features like self- [6] Lin P, MacArthur A, and Leaney J.. 2005. Defining Autonomic
awareness, self-regulation, environment awareness, self- Computing: A Software Engineering Perspective. [n Proceedings

adaptiveq Self.deﬁning‘ and Sc]f_cxpressi()n’ apan from Uf the Australian CUI!/E’I'&'HL‘(’ on Solhrure Eﬂgillt.’?l‘lﬂg (ASWEC

62 NIET Journal of Engineering and Technology, Vol. 4, Issue 1, 2013

%

'05). IEEE Computer Society, Washington, DC, USA, pp: 88-97.

[7] Beckmann B. E., Grabowski L. M., McKinley P. K.. and Ofria C.
2008. Autonomic Software Development Methodology Based
on Darwinian Evolution. In Proceedings of the International
Conference on Autonomic Computing (ICAC '08). 1EEE
Computer Society, Washington, DC, USA, pp: 203-204.

[8] ArnautovicE., Kaindl H.,Falb I.. and Popp R.. 2008. High-
Level Modeling of Software-Management Interactions and
Tasks for Autonomic Computing. In Proceedings of the
Fourth International Conference on Autonomic and Autonomous
Systems (ICAS '08). IEEE Computer Society, Washington, DC,
USA,pp: 212-218.

[9] Nami MR. and Bertels K., 2007. A Survey of Autonomic
Computing Systems. In Proceedings of the Third International
Conference on Autonomic and Autonomous Systems (1CAS '07).
IEEE Computer Society, Washington, DC, USA, 26-
20.Quitadamo R. and Zambonelli F., Autonomic
Communication Services: A New Challenge for Software
Agents, Autonomous Agents and Multi-Agent Systems Volume
17, Number 3, pp : 457-475.

Amoui M.. Salehie M., Mirarab S, and Tahvildari L. 2008.
Adaptive Action Selection in Autonomic Software Using
Reinforcement Learning. In Proceedings of the Fourth
International Conference on Autonomic and Autonomous
Systems (ICAS ‘08). IEEE Computer Society, Washington, DC,
USA. pp: 175-181.

King T.M., Ramirez A., Clarke P. J., and Quinones-Morales B., A
Reusable Object-Oriented Design to Support Self-Testable
Autonomic Software. In Proceedings of the 2008 ACM
symposium on Applied computing (SAC '08). ACM, New York,
NY, USA, pp: 1664- 1669.

[10]

(11]

AUTHOR BIOGRAPHY

Mr. Deepak Kumar Tyagi is working
as Senior Lecturer in department of
MCA. He has also guided many
students of MCA in various projects.
His qualification is M.Tech in Software
Engineering from MTU Noida. His area
of interest is C, C++, JAVA, Data
structures using C.

Dr. Anuraag Awasthi, Director (MCA)
is a multifaceted personality with rich
corporate, government and academic
experience. He has served industry in
senior leadership positions in global
organizations like IBM, HCL, Bharti
Airtel Group, Nihon Unisys etc. in India
and many countries like Japan, France
and Thailand. He has also been Dean, Faculty of
Engineering & Technology, JVW University, Jaipur, and
Director, IIMT, Dehradun, before joining NIET. During
his vast corporate career, he has been Head of various
functions like SW Development, Quality, HR, IT and
Customer Support. He has hands-on exposure of leading
areas like Information Security, SW Quality, Employee
Engagement, HR Services and Systems, Learning & OD.
During his long career, he has won several performance
excellence awards. He has also been involved with social
work as Citizen Warden appointed by Lieutenant
Governor of Delhi.

Dr. Awasthi obtained Master of Computer Applications
(MCA) from Birla Institute of Technology, Mesra
(Ranchi) in January 1988, M.Sc. (TQM) from Kuvempu
University (Gold Medalist), PGDHRM from IMT
Ghaziabad, LLB from Delhi University and Ph.D. (CS)
from Kumaun University in 2005.

Mr. Ritesh Rastogi is working as an
Associate Professor in NIET in
Department of MCA. He has guided
many of the M. Tech students and many
projects of MCA. His qualification is
M.Tech in Computer Science. His area
of interest is Software Engineering,
Software Quality Assurance, Software
Testing, Managing People, Training & Development, C
Programming.

NIET Journal of Engineering and Technology, Vol. 4, Issue 1, 2013

63

